Compositional uncertainty in deep Gaussian processes
暂无分享,去创建一个
Ieva Kazlauskaite | Carl Henrik Ek | Neill D. F. Campbell | Ivan Ustyuzhaninov | Markus Kaiser | Erik Bodin
[1] A. Kiureghian,et al. Aleatory or epistemic? Does it matter? , 2009 .
[2] Neil D. Lawrence,et al. Hierarchical Gaussian process latent variable models , 2007, ICML '07.
[3] Dustin Tran,et al. TensorFlow Distributions , 2017, ArXiv.
[4] Tim G. J. Rudner. Inter-domain Deep Gaussian Processes , 2020, ICML.
[5] Ryan P. Adams,et al. Avoiding pathologies in very deep networks , 2014, AISTATS.
[6] Zoubin Ghahramani,et al. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.
[7] Andrew M. Stuart,et al. How Deep Are Deep Gaussian Processes? , 2017, J. Mach. Learn. Res..
[8] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[9] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[10] Marc Peter Deisenroth,et al. Doubly Stochastic Variational Inference for Deep Gaussian Processes , 2017, NIPS.
[11] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[12] Ieva Kazlauskaite,et al. Gaussian Process Latent Variable Alignment Learning , 2018, AISTATS.
[13] Andreas C. Damianou,et al. Deep Gaussian processes and variational propagation of uncertainty , 2015 .
[14] Neil D. Lawrence,et al. Deep Gaussian Processes , 2012, AISTATS.
[15] Neil D. Lawrence,et al. Variational Auto-encoded Deep Gaussian Processes , 2015, ICLR.
[16] Guodong Zhang,et al. Functional Variational Bayesian Neural Networks , 2019, ICLR.
[17] Neil D. Lawrence,et al. Nested Variational Compression in Deep Gaussian Processes , 2014, 1412.1370.
[18] C. Rasmussen,et al. Gaussian Process Priors with Uncertain Inputs - Application to Multiple-Step Ahead Time Series Forecasting , 2002, NIPS.
[19] Juan José Murillo-Fuentes,et al. Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo , 2018, NeurIPS.
[20] Ieva Kazlauskaite,et al. Monotonic Gaussian Process Flow , 2019, ArXiv.
[21] Hongseok Yang,et al. On Nesting Monte Carlo Estimators , 2017, ICML.
[22] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[23] Kurt Cutajar,et al. Broadening the scope of gaussian processes for large-scale learning. (Élargir la portée des processus gaussiens pour l'apprentissage à grande échelle) , 2019 .
[24] Neil D. Lawrence,et al. Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.
[25] Carl E. Rasmussen,et al. Gaussian Process Training with Input Noise , 2011, NIPS.
[26] Miguel Lázaro-Gredilla,et al. Bayesian Warped Gaussian Processes , 2012, NIPS.
[27] Neil D. Lawrence,et al. Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.
[28] Martín Abadi,et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.
[29] Pieter Abbeel,et al. Inverse Reinforcement Learning via Deep Gaussian Process , 2015, UAI.
[30] Daniel Hernández-Lobato,et al. Deep Gaussian Processes for Regression using Approximate Expectation Propagation , 2016, ICML.
[31] Arno Solin,et al. Variational Fourier Features for Gaussian Processes , 2016, J. Mach. Learn. Res..
[32] H. J. Bijl,et al. LQG and Gaussian process techniques: For fixed-structure wind turbine control , 2018 .
[33] Yarin Gal,et al. Uncertainty in Deep Learning , 2016 .
[34] Jasper Snoek,et al. Input Warping for Bayesian Optimization of Non-Stationary Functions , 2014, ICML.
[35] Thomas A. Runkler,et al. Bayesian Alignments of Warped Multi-Output Gaussian Processes , 2018, NeurIPS.