Dynamic weighting in simulations of spin systems

[1]  S G Whittington,et al.  Interacting self-avoiding walks and polygons in three dimensions , 1996 .

[2]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[3]  Rehberg,et al.  Simulated-tempering procedure for spin-glass simulations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[5]  Berg,et al.  New approach to spin-glass simulations. , 1992, Physical review letters.

[6]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[7]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[8]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[9]  Wang,et al.  Low-temperature properties of the , 1988, Physical review. B, Condensed matter.

[10]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[11]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  Sanford Weisberg,et al.  Computing science and statistics : proceedings of the 30th Symposium on the Interface, Minneapolis, Minnesota, May 13-16, 1998 : dimension reduction, computational complexity and information , 1998 .

[14]  Connie Page,et al.  Computing Science and Statistics , 1992 .