Standing surface waves in a dust-contaminated large-area planar plasma source

The effect of charged particulates or dusts on surface wave produced microwave discharges is studied. The frequencies of the standing electromagnetic eigenmodes of large-area flat plasmas are calculated. The dusts absorb a significant amount of the plasma electrons and can lead to a modification of the electromagnetic field structure in the discharge by shifting the originally excited operating mode out of resonance. For certain given proportions of dusts, mode conversion is found to be possible. The power loss in the discharge is also increased because of dust-specific dissipations, leading to a decrease of the operating mode quality factor.

[1]  M. Nagatsu,et al.  Large-area high-density plasma excitation using standing pure and hybrid surface waves , 1998 .

[2]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[3]  M. Nagatsu,et al.  Surface Wave Eigenmodes in a Finite-Area Plane Microwave Plasma , 1997 .

[4]  D. Korzec,et al.  Scaling of microwave slot antenna (SLAN): a concept for efficient plasma generation , 1996 .

[5]  M. Yu,et al.  SHIELDING OF DUST GRAINS AT THE EDGE OF AN EQUILIBRIUM PLASMA , 1997 .

[6]  V. Tsytovich Dust plasma crystals, drops, and clouds , 1997 .

[7]  W. Köhler,et al.  Observation of dust particle growth and fallout in RF-excited silane discharges , 1994 .

[8]  M. Nagatsu,et al.  Mode identification of surface waves excited in a planar microwave discharge , 1997 .

[9]  M. Nagatsu,et al.  High-density flat plasma production based on surface waves , 1998 .

[10]  L. Stenflo,et al.  Electron oscillations in a plasma slab , 1998 .

[11]  S. Kobayashi,et al.  Gegeneration of a Microwave Plasma Using Traveling Waves , 1989 .

[12]  W. Holber,et al.  Particle behaviour in an electron cyclotron resonance plasma etch tool , 1994 .

[13]  L. Stenflo,et al.  Linear theory of a cold bounded plasma , 1983 .

[14]  N. A. Azarenkov,et al.  Nonlinear effects of ionization on surface waves on a plasma-metal interface , 1998 .

[15]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[16]  A. Bouchoule,et al.  Particle generation and behavior in a silane‐argon low‐pressure discharge under continuous or pulsed radio‐frequency excitation , 1991 .

[17]  D. Graves,et al.  Transport and heating of small particles in high density plasma sources , 1994 .

[18]  E. W. McDaniel,et al.  Collision phenomena in ionized gases , 1964 .

[19]  Y. Yoshida,et al.  Development of surface-wave ion source using coaxial-type cavity , 1997 .

[20]  Hideo Sugai,et al.  Mode Jumps and Hysteresis in Surface-Wave Sustained Microwave Discharges , 1997 .

[21]  Shunjiro Shinohara,et al.  Propagating Wave Characteristics for Plasma Production in Plasma Processing Field , 1997 .

[22]  N. A. Azarenkov,et al.  A model of a large-area planar plasma producer based on surface wave propagation in a plasma-metal structure with a dielectric sheath , 1995 .

[23]  Partha P Banerjee,et al.  Principles of Nonlinear Optics , 1989 .

[24]  Yukio Watanabe Dust phenomena in processing plasmas , 1997 .

[25]  D. Graves,et al.  Charging, transport and heating of particles in radiofrequency and electron cyclotron resonance plasmas , 1994 .

[26]  M. Nagatsu,et al.  Optical Emission and Microwave Field Intensity Measurements in Surface Wave-Excited Planar Plasma , 1996 .