A tentative chronology for the EPICA Dome Concordia Ice Core

A tentative age scale (EDC1) for the last 45 kyr is established for the new 788‐m EPICA Dome C ice core using a simple ice flow model. The age of volcanic eruptions, the end of the Younger Dryas event, and the estimated depth and age of elevated 10Be, about 41 kyr ago were used to calibrate the model parameters. The uncertainty of EDC1 is estimated to ±10 yr for 0 to 700 yr BP, up to ±200 yr back to 10 kyr BP, and up to ±2 kyr back to 41 kyr BP. The age of the air in the bubbles is calculated with a firn densification model. In the Holocene the air is about 2000 yr younger than the ice and about 5500 yr during the last glacial maximum.

[1]  J. Jouzel,et al.  A new 27 ky high resolution East Antarctic climate record , 2001 .

[2]  T. Stocker,et al.  Atmospheric CO2 concentrations over the last glacial termination. , 2001, Science.

[3]  H. Synal,et al.  Chlorine-36 evidence for the Mono Lake event in the Summit GRIP ice core , 2000 .

[4]  Alexandra Schramm,et al.  Calibration of the 14C time scale to > 40 ka by 234U-230Th dating of Lake Lisan sediments (last glacial Dead Sea) , 2000 .

[5]  J. Schwander,et al.  Holocene electrical and chemical measurements from the EPICA–Dome C ice core , 2000, Annals of Glaciology.

[6]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[7]  J. Schwander,et al.  Comparison of Holocene electrical records from Dome C and Vostok, Antarctica , 1999, Annals of Glaciology.

[8]  D. Vaughan,et al.  Distortion of isochronous layers in ice revealed by ground-penetrating radar , 1999, Nature.

[9]  T. Stocker,et al.  Asynchrony of Antarctic and Greenland climate change during the last glacial period , 1998, Nature.

[10]  G. Raisbeck Absolute Dating of the Last 7000 Years of the Vostok Ice Core Using 10Be , 1998 .

[11]  A. Passerini,et al.  Determination of the surface and bed topography at Dome C, East Antarctica , 1998, Journal of Glaciology.

[12]  Michael Friedrich,et al.  Revisions and Extension of the Hohenheim Oak and Pine Chronologies: New Evidence About the Timing of the Younger Dryas/Preboreal Transition , 1998, Radiocarbon.

[13]  J. Jouzel,et al.  Beryllium 10 in the Greenland Ice Core Project ice core at Summit , 1997 .

[14]  Marcel Delmotte Enregistrements climatiques à Law Dome : variabilité pour les périodes récentes et pour la déglaciation , 1997 .

[15]  J. Schwander,et al.  Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change , 1997 .

[16]  H. Clausen,et al.  50,000 YEARS OF RECORDED GLOBAL VOLCANISM , 1997 .

[17]  H. Clausen,et al.  Electrical conductivity method (ECM) stratigraphic dating of the Byrd Station ice core, Antarctica , 1994, Annals of Glaciology.

[18]  J. Jouzel,et al.  A 135,000‐year Vostok‐Specmap Common temporal framework , 1993 .

[19]  D. Raynaud,et al.  δ15N of N2 in air trapped in polar ice: A tracer of gas transport in the firn and a possible constraint on ice age-gas age differences , 1992 .

[20]  W. Dansgaard,et al.  On Flow Model Dating of Stable Isotope Records from Greenland Ice Cores , 1992 .

[21]  J. Jouzel,et al.  Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years) , 1987, Nature.

[22]  J. Jouzel,et al.  Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation , 1984 .

[23]  Jean Jouzel,et al.  A detailed study of snow accumulation and stable isotope content in Dome C (Antarctica) , 1982 .

[24]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[25]  Niels Reeh,et al.  Dating of Greenland Ice Cores by Flow Models, Isotopes, Volcanic Debris, and Continental Dust , 1978, Journal of Glaciology.