Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length

Microtubules are hollow cylindrical structures that constitute one of the three major classes of cytoskeletal filaments. On the mesoscopic length scale of a cell, their material properties are characterized by a single stiffness parameter, the persistence length ℓp. Its value, in general, depends on the microscopic interactions between the constituent tubulin dimers and the architecture of the microtubule. Here, we use single-particle tracking methods combined with a fluctuation analysis to systematically study the dependence of ℓp on the total filament length L. Microtubules are grafted to a substrate with one end free to fluctuate in three dimensions. A fluorescent bead is attached proximally to the free tip and is used to record the thermal fluctuations of the microtubule's end. The position distribution functions obtained with this assay allow the precise measurement of ℓp for microtubules of different contour length L. Upon varying L between 2.6 and 47.5 μm, we find a systematic increase of ℓp from 110 to 5,035 μm. At the same time we verify that, for a given filament length, the persistence length is constant over the filament within the experimental accuracy. We interpret this length dependence as a consequence of a nonnegligible shear deflection determined by subnanometer relative displacement of adjacent protofilaments. Our results may shine new light on the function of microtubules as sophisticated nanometer-sized molecular machines and give a unified explanation of seemingly uncorrelated spreading of microtubules' stiffness previously reported in literature.

[1]  S. Fajfer,et al.  Color suppressed contributions to the decay modes $B_{d,s} \to D_{s,d} D_{s,d} $, $B_{d,s} \to D_{s,d} D^*_{s,d}$, and $B_{d,s} \to D^*_{s,d} D^*_{s,d} $ , 2005, hep-ph/0501031.

[2]  Ozlem Keskin,et al.  Relating molecular flexibility to function: a case study of tubulin. , 2002, Biophysical journal.

[3]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[4]  C. Schmidt,et al.  Resolving the molecular structure of microtubules under physiological conditions with scanning force microscopy , 2004, European Biophysics Journal.

[5]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[6]  Alexandr Jonás,et al.  Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. , 2003, Optics letters.

[7]  S. Fuller,et al.  Microtubules switch occasionally into unfavorable configurations during elongation. , 2000, Journal of molecular biology.

[8]  N. Stenseth,et al.  Ecological and genetic spatial structuring in the Canadian lynx , 2003, Nature.

[9]  G. Dietler,et al.  Oscillation modes of microtubules , 2004, Biology of the cell.

[10]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[11]  Henrik Flyvbjerg,et al.  Modeling elastic properties of microtubule tips and walls , 1998, European Biophysics Journal.

[12]  L. Kollár,et al.  Mechanics of Composite Structures , 2003 .

[13]  Transverse fluctuations of grafted polymers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Dennis Bray,et al.  Cell Movements: From Molecules to Motility , 1992 .

[15]  K. Ewert,et al.  Radial compression of microtubules and the mechanism of action of taxol and associated proteins. , 2005, Biophysical journal.

[16]  Erwin Frey,et al.  Brownian motion: a paradigm of soft matter and biological physics , 2005, Annalen der Physik.

[17]  A C Maggs,et al.  Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. , 1994, The Journal of biological chemistry.

[18]  William V Nicholson,et al.  Microtubule structure at 8 A resolution. , 2002, Structure.

[19]  F Metoz,et al.  Lattice defects in microtubules: protofilament numbers vary within individual microtubules , 1992, The Journal of cell biology.

[20]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[21]  Giovanni Dietler,et al.  Mechanical properties of microtubules explored using the finite elements method. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  D. Chrétien,et al.  New data on the microtubule surface lattice , 1991, Biology of the cell.

[23]  Depinning of semiflexible polymers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Frey,et al.  Force-Extension Relation and Plateau Modulus for Wormlike Chains. , 1996, Physical review letters.

[25]  François Nédélec,et al.  Self-organisation and forces in the microtubule cytoskeleton. , 2003, Current opinion in cell biology.

[26]  Radial Distribution Function of Semiflexible Polymers. , 1996, Physical review letters.

[27]  K. Ewert,et al.  Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions. , 2004, Physical review letters.

[28]  D. Odde,et al.  Estimates of lateral and longitudinal bond energies within the microtubule lattice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  F. MacKintosh,et al.  Deformation and collapse of microtubules on the nanometer scale. , 2003, Physical review letters.

[30]  L. Mahadevan,et al.  Kinks, rings, and rackets in filamentous structures , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  I. Jánosi,et al.  Mechanical stress induced mechanism of microtubule catastrophes. , 2005, Journal of molecular biology.

[32]  H Tashiro,et al.  Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. , 1995, Cell motility and the cytoskeleton.

[33]  Nathan A. Baker,et al.  The physical basis of microtubule structure and stability , 2003, Protein science : a publication of the Protein Society.

[34]  Avi Caspi,et al.  Semiflexible Polymer Network: A View From Inside , 1998 .

[35]  Marileen Dogterom,et al.  A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity. , 2004, Biophysical journal.

[36]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[37]  Alex Mogilner,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2002 .

[38]  Nobuhiko Saitô,et al.  The Statistical Mechanical Theory of Stiff Chains , 1967 .

[39]  B. Mickey,et al.  Rigidity of microtubules is increased by stabilizing agents , 1995, The Journal of cell biology.

[40]  J. Howard,et al.  Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape , 1993, The Journal of cell biology.

[41]  Erwin Frey,et al.  Tracer studies on f-actin fluctuations. , 2002, Physical review letters.

[42]  O. Kratky,et al.  Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .

[43]  C. Schönenberger,et al.  Nanomechanics of microtubules. , 2002, Physical review letters.

[44]  A. Matus,et al.  Domains of Neuronal Microtubule-associated Proteins and Flexural Rigidity of Microtubules , 1997, The Journal of cell biology.

[45]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[46]  C. A. Carraway,et al.  The Cytoskeleton : a practical approach , 1993 .

[47]  H. Flyvbjerg,et al.  Limited flexibility of the inter-protofilament bonds in microtubules assembled from pure tubulin , 1998, European Biophysics Journal.

[48]  M. Schliwa,et al.  Flexural rigidity of microtubules measured with the use of optical tweezers. , 1996, Journal of cell science.