Discriminative statistical approaches for multilingual speech understanding (Approches statistiques discriminantes pour l’interprétation sémantique multilingue de la parole) [in French]

Discriminative statistical approaches for multilingual speech understanding Statistical approaches are now widespread in the various applications of natural language processing and the elicitation of an approach usually depends on the targeted task. This paper presents a comparison between the methods used for machine translation and speech understanding. This comparison allows to propose a unified approach to perform a joint decoding which translates a sentence and assign semantic tags to the translation at the same time. This decoding is achieved through a finite-state transducer approach which allows to compose a translation graph with an understanding graph. This representation can be generalized to allow the rich transmission of information between the components of a human-machine vocal interface.

[1]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[2]  Hermann Ney,et al.  Discriminative Training and Maximum Entropy Models for Statistical Machine Translation , 2002, ACL.

[3]  Chris Callison-Burch,et al.  Open Source Toolkit for Statistical Machine Translation: Factored Translation Models and Lattice Decoding , 2006 .

[4]  Andreas Stolcke,et al.  SRILM - an extensible language modeling toolkit , 2002, INTERSPEECH.

[5]  Joan-Andreu Sánchez,et al.  Part-of-Speech Tagging Based on Machine Translation Techniques , 2007, IbPRIA.

[6]  Gökhan Tür,et al.  Beyond ASR 1-best: Using word confusion networks in spoken language understanding , 2006, Comput. Speech Lang..

[7]  Frédéric Béchet,et al.  Conceptual decoding from word lattices: application to the spoken dialogue corpus MEDIA , 2006, INTERSPEECH.

[8]  Hermann Ney,et al.  Comparing Stochastic Approaches to Spoken Language Understanding in Multiple Languages , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[9]  Ben Taskar,et al.  Alignment by Agreement , 2006, NAACL.

[10]  Johan Schalkwyk,et al.  OpenFst: A General and Efficient Weighted Finite-State Transducer Library , 2007, CIAA.

[11]  Anil Kumar Singh,et al.  Modeling Letter-to-Phoneme Conversion as a Phrase Based Statistical Machine Translation Problem with Minimum Error Rate Training , 2009, HLT-NAACL.

[12]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[13]  Alexandre Allauzen,et al.  From n-gram-based to CRF-based Translation Models , 2011, WMT@EMNLP.

[14]  Hermann Ney,et al.  Applications of Statistical Machine Translation Approaches to Spoken Language Understanding , 2009, IEEE Transactions on Audio, Speech, and Language Processing.

[15]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[16]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[17]  Robert L. Mercer,et al.  The Mathematics of Statistical Machine Translation: Parameter Estimation , 1993, CL.

[18]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[19]  José B. Mariño,et al.  Improving statistical MT by coupling reordering and decoding , 2006, Machine Translation.

[20]  François Yvon,et al.  Practical Very Large Scale CRFs , 2010, ACL.

[21]  José B. Mariño,et al.  N-gram-based Machine Translation , 2006, CL.

[22]  Sophie Rosset,et al.  Semantic annotation of the French media dialog corpus , 2005, INTERSPEECH.

[23]  Gökhan Tür,et al.  Improving spoken language understanding using word confusion networks , 2002, INTERSPEECH.

[24]  Daniel Marcu,et al.  Statistical Phrase-Based Translation , 2003, NAACL.

[25]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[26]  Fabrice Lefèvre,et al.  Investigating multiple approaches for SLU portability to a new language , 2010, INTERSPEECH.

[27]  Mitchell P. Marcus,et al.  Text Chunking using Transformation-Based Learning , 1995, VLC@ACL.

[28]  I. Dan Melamed,et al.  Scalable Discriminative Learning for Natural Language Parsing and Translation , 2006, NIPS.

[29]  Gökhan Tür,et al.  Joint Decoding for Speech Recognition and Semantic Tagging , 2012, INTERSPEECH.

[30]  Shankar Kumar,et al.  A Weighted Finite State Transducer Implementation of the Alignment Template Model for Statistical Machine Translation , 2003, NAACL.

[31]  Hermann Ney,et al.  Natural language understanding using statistical machine translation , 2001, INTERSPEECH.

[32]  José B. Mariño,et al.  Ncode: an Open Source Bilingual N-gram SMT Toolkit , 2011, Prague Bull. Math. Linguistics.

[33]  Fabrice Lefèvre,et al.  Comparaison et combinaison d’approches pour la portabilité vers une nouvelle langue d’un système de compréhension de l’oral (Comparison and combination of approaches for the portability to a new language of an oral comprehension system) , 2011, JEPTALNRECITAL.