Asymptotic stability of the linear ito equation in infinite dimensions

[1]  Michel C. Delfour,et al.  Stability and the Infinite-Time Quadratic Cost Problem for Linear Hereditary Differential Systems , 1975 .

[2]  U. Haussmann On the Existence of Moments of Stationary Linear Systems with Multiplicative Noise , 1974 .

[3]  Jacques L. Willems,et al.  Mean square stability criteria for stochastic feedback systems , 1973 .

[4]  R. Datko,et al.  Uniform Asymptotic Stability of Evolutionary Processes in a Banach Space , 1972 .

[5]  Stabilization of linear systems with multiplicative noise , 1972 .

[6]  F. Kozin,et al.  Stability of the linear stochastic system , 1972 .

[7]  J. Willems,et al.  Average value criteria for stochastic stability , 1972 .

[8]  R. Curtain,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS IN HILBERT SPACE , 1971 .

[9]  R. Datko Extending a theorem of A. M. Liapunov to Hilbert space , 1970 .

[10]  Peter Falb,et al.  Ito's lemma in infinite dimensions , 1970 .

[11]  W. Wonham Random differential equations in control theory , 1970 .

[12]  D. Kleinman On the stability of linear stochastic systems , 1969 .

[13]  Iosif Ilitch Gikhman,et al.  Introduction to the theory of random processes , 1969 .

[14]  A. T. Bharucha-Reid,et al.  Probabilistic methods in applied mathematics , 1968 .

[15]  F. Kozin On almost sure asymptotic sample properties of diffusion processes defined by stochastic differential equation , 1965 .

[16]  J. Lions Equations Differentielles Operationnelles , 1961 .

[17]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.