Extrasynaptic transmission and the diffusion parameters of the extracellular space

Extrasynaptic volume transmission, mediated by the diffusion of neuroactive substances in the extracellular space (ECS), plays an important role in short- and long-distance communication between nerve cells. The ability of a substance to reach extrasynaptic high-affinity receptors via diffusion depends on the ECS diffusion parameters, ECS volume fraction alpha (alpha=ECS volume/total tissue volume) and tortuosity lambda (lambda2=free/apparent diffusion coefficient), which reflects the presence of diffusion barriers represented by, e.g., fine astrocytic processes or extracellular matrix molecules. These barriers channel the migration of molecules in the ECS, so that diffusion may be facilitated in a certain direction, i.e. anisotropic. The diffusion parameters alpha and lambda differ in various brain regions, and diffusion in the CNS is therefore inhomogeneous. Changes in diffusion parameters have been found in many physiological and pathological states, such as development and aging, neuronal activity, lactation, ischemia, brain injury, degenerative diseases, tumor growth and others, in which cell swelling, glial remodeling and extracellular matrix changes are key factors influencing diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect the accumulation and diffusion of neuroactive substances and thus extrasynaptic transmission, neuron-glia communication, mediator "spillover" and synaptic crosstalk as well as, cell migration. The various changes occurring during pathological states can be important for diagnosis, drug delivery and treatment.

[1]  Sterling Chaykin,et al.  [123] Nicotinamide deamidase , 1971 .

[2]  M. Herkenham,et al.  Mismatches between neurotransmitter and receptor localizations in brain: observations and implications , 1987, Neuroscience.

[3]  C. Nicholson,et al.  Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission. , 1993, Journal of neurophysiology.

[4]  D. Kullmann,et al.  Extrasynaptic Glutamate Spillover in the Hippocampus: Dependence on Temperature and the Role of Active Glutamate Uptake , 1997, Neuron.

[5]  C. Nicholson,et al.  Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. , 2004, Journal of neurophysiology.

[6]  A. Lehmenkühler,et al.  Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis , 1993, Neuroscience.

[7]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[8]  D. Poulain,et al.  Activity-dependent neuronal-glial and synaptic plasticity in the adult mammalian hypothalamus , 1993, Neuroscience.

[9]  L. Bonfanti,et al.  Radial Glia‐Like Cells in the Supraoptic Nucleus of the Adult Rat , 1993, Journal of neuroendocrinology.

[10]  E. Sykova,et al.  Heterogeneous and anisotropic diffusion in the developing rat spinal cord , 1997, Neuroreport.

[11]  E. Vizi,et al.  Nitric oxide: a novel link between synaptic and nonsynaptic transmission , 2001, Trends in Neurosciences.

[12]  Carl-Fredrik Westin,et al.  High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. , 2002, AJNR. American journal of neuroradiology.

[13]  H. Lassmann,et al.  Changes of extracellular space volume and tortuosity in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. , 1996, Physiological research.

[14]  F. Kirchhoff,et al.  Astroglial processes show spontaneous motility at active synaptic terminals in situ , 2004, The European journal of neuroscience.

[15]  E. Vizi Interaction between adrenergic and cholinergic systems: presynaptic inhibitory effect of noradrenaline on acetylcholine release. , 1974, Journal of neural transmission.

[16]  C. Nicholson,et al.  Extracellular space structure revealed by diffusion analysis , 1998, Trends in Neurosciences.

[17]  K. Fuxe,et al.  Volume transmission in the CNS and its relevance for neuropsychopharmacology. , 1999, Trends in pharmacological sciences.

[18]  J P Huston,et al.  Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus , 2002, Hippocampus.

[19]  S. Oliet,et al.  Control of Glutamate Clearance and Synaptic Efficacy by Glial Coverage of Neurons , 2001, Science.

[20]  E. Syková,et al.  Diffusion properties of the brain in health and disease , 2004, Neurochemistry International.

[21]  E. Vizi Non-synaptic modulation of transmitter release: pharmacological implication , 1979 .

[22]  Eva Syková,et al.  Extracellular space volume changes in the rat spinal cord produced by nerve stimulation and peripheral injury , 1991, Brain Research.

[23]  R. U. Margolis,et al.  Nervous tissue proteoglycans , 1993, Experientia.

[24]  E. Syková,et al.  Extrasynaptic volume transmission and diffusion parameters of the extracellular space , 2004, Neuroscience.

[25]  P. Haydon Glia: listening and talking to the synapse , 2001, Nature Reviews Neuroscience.

[26]  T. Hardingham,et al.  Proteoglycans: many forms and many functions , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[27]  Non-synaptic interaction between neurons in the brain, an analog system: far from Cajal-Sherringtons's galaxy. , 2003, Bulletin et memoires de l'Academie royale de medecine de Belgique.

[28]  C. Nicholson,et al.  Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging. , 1993, Biophysical journal.

[29]  Janos P. Kiss,et al.  Nonsynaptic communication in the central nervous system , 2004, Neurochemistry International.

[30]  Luigi F. Agnati,et al.  Volume transmission in the brain. Novel mechanisms for neural transmission Edited by K. Fuxe and L.F. Agnati, Advances in neuroscience vol. 1, Raven Press, New York, 1991, 602 pp., US$ 130,- , 1992, Neuroscience Letters.

[31]  M. Schachner,et al.  Glycans and neural cell interactions , 2004, Nature Reviews Neuroscience.

[32]  R. Spreafico,et al.  Perineuronal nets: past and present , 1998, Trends in Neurosciences.

[33]  C. Nicholson,et al.  Poly[N-(2-hydroxypropyl)methacrylamide] polymers diffuse in brain extracellular space with same tortuosity as small molecules. , 2001, Biophysical journal.

[34]  E. Syková,et al.  Glial diffusion barriers during aging and pathological states. , 2001, Progress in brain research.

[35]  A. van Harreveld,et al.  Effects of calcium on the electrical resistance and the extracellular space of cerebral cortex. , 1971, Experimental neurology.

[36]  K. Fuxe,et al.  Intercellular communication in the brain: Wiring versus volume transmission , 1995, Neuroscience.

[37]  I. Vorisek,et al.  Water ADC, extracellular space volume, and tortuosity in the rat cortex after traumatic injury , 2002, Magnetic resonance in medicine.

[38]  Eva Syková,et al.  Hypoosmolar conditions reduce extracellular volume fraction and enhance epileptiform activity in the CA3 region of the immature rat hippocampus , 2006, Journal of neuroscience research.

[39]  R. Andrew,et al.  Potential sources of intrinsic optical signals imaged in live brain slices. , 1999, Methods.

[40]  Eva Syková,et al.  The Extracellular Space in the CNS: Its Regulation, Volume and Geometry in Normal and Pathological Neuronal Function , 1997 .

[41]  M. Schachner,et al.  Extracellular matrix molecules and synaptic plasticity , 2003, Nature Reviews Neuroscience.

[42]  W. Paton,et al.  The inhibitory action of noradrenaline and adrenaline on release of acetylcholine from guinea-pig ileum longitudinal strips , 2004, Naunyn-Schmiedebergs Archiv für Pharmakologie und experimentelle Pathologie.

[43]  T. Mazel,et al.  Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer's disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  K. Hossmann,et al.  Cortical Impedance and Extracellular Volume Changes following Middle Cerebral Artery Occlusion in Cats , 1982, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[45]  E. Syková,et al.  Evolution of anisotropic diffusion in the developing rat corpus callosum. , 1997, Journal of neurophysiology.

[46]  E. Lábos,et al.  Non-synaptic interactions at presynaptic level , 1991, Progress in Neurobiology.

[47]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[48]  T. Mazel,et al.  Reduced extracellular space in the brain of tenascin‐R‐ and HNK‐1‐sulphotransferase deficient mice , 2005, The European journal of neuroscience.

[49]  S. Hockfield,et al.  Expression of a Cleaved Brain-Specific Extracellular Matrix Protein Mediates Glioma Cell Invasion In Vivo , 1998, The Journal of Neuroscience.

[50]  R. Kodet,et al.  Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours , 2004, Neuropathology and applied neurobiology.

[51]  E. Vizi,et al.  Inhibitory effect of nitric oxide on dopamine transporters: interneuronal communication without receptors , 2004, Neurochemistry International.

[52]  I. Vorisek,et al.  Ischemia-Induced Changes in the Extracellular Space Diffusion Parameters, K+, and pH in the Developing Rat Cortex and Corpus Callosum , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[53]  A. Chvátal,et al.  Analysis of K+ accumulation reveals privileged extracellular region in the vicinity of glial cells in situ , 2004, Journal of neuroscience research.

[54]  T. Mazel,et al.  Astrocytes, oligodendroglia, extracellular space volume and geometry in rat fetal brain grafts , 1999, Neuroscience.

[55]  T. Cunnane Non-synaptic Interactions Between Neurons: Modulation of Neurochemical Transmission by E. Sylvester Vizi, John Wiley & Sons, 1984. £22.50 (xiii + 260 pages) ISBN 0 471 90378 7 , 1985, Trends in Neurosciences.

[56]  G J Barker,et al.  Water diffusion in the human hippocampus in epilepsy. , 1999, Magnetic resonance imaging.

[57]  C. Brosnan,et al.  Quantitative aspects of reactive gliosis: A review , 1992, Neurochemical Research.

[58]  G. I. Hatton Function-related plasticity in hypothalamus. , 1997, Annual review of neuroscience.

[59]  E. Vizi Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. , 2000, Pharmacological reviews.

[60]  C. Nicholson,et al.  Extracellular potassium, volume fraction, and tortuosity in rat hippocampal CA1, CA3, and cortical slices during ischemia. , 1995, Journal of neurophysiology.

[61]  E. Vizi Stimulation, by inhibition of (Na+‐K+‐Mg2+)‐activated, ATP‐ase, of acetylcholine release in cortical slices from rat brain , 1972, The Journal of physiology.

[62]  Charles Nicholson,et al.  Light scattering in rat neocortical slices differs during spreading depression and ischemia , 2002, Brain Research.

[63]  R. Kiss,et al.  Galectin‐1 Modulates Human Glioblastoma Cell Migration into the Brain Through Modifications to the Actin Cytoskeleton and Levels of Expression of Small GTPases , 2002, Journal of neuropathology and experimental neurology.

[64]  Eva Syková,et al.  Diffusion parameters of the extracellular space in human gliomas , 2003, Glia.

[65]  Extracellular space volume changes and diffusion barriers in rats with kaolin-induced and inherited hydrocephalus. , 2001, European journal of pediatric surgery : official journal of Austrian Association of Pediatric Surgery ... [et al] = Zeitschrift fur Kinderchirurgie.

[66]  Dimitri M Kullmann,et al.  LTP of AMPA and NMDA Receptor–Mediated Signals: Evidence for Presynaptic Expression and Extrasynaptic Glutamate Spill-Over , 1996, Neuron.

[67]  B. MacVicar,et al.  Imaging of synaptically evoked intrinsic optical signals in hippocampal slices , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  Eva Syková,et al.  Diffusion barriers evoked in the rat cortex by reactive astrogliosis , 1999, Glia.

[69]  C. Nicholson,et al.  Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. , 1981, The Journal of physiology.

[70]  Eva Syková,et al.  The relationship between changes in intrinsic optical signals and cell swelling in rat spinal cord slices , 2003, NeuroImage.

[71]  L. Vargova,et al.  Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia , 1996, Magnetic resonance in medicine.

[72]  Eva Syková,et al.  Diffusion heterogeneity and anisotropy in rat hippocampus , 1998, Neuroreport.

[73]  S. Kumar,et al.  Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture. , 1999, Journal of cell science.

[74]  W. Paton,et al.  The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guinea‐pig ileum longitudinal muscle strip , 1969, British journal of pharmacology.

[75]  Charles Nicholson,et al.  In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. Oliet,et al.  Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  L. Vargova,et al.  Effect of osmotic stress on potassium accumulation around glial cells and extracellular space volume in rat spinal cord slices , 2001, Journal of neuroscience research.