Combining competent crossover and mutation operators: a probabilistic model building approach

This paper presents an approach to combine competent crossover and mutation operators via probabilistic model building. Both operators are based on the probabilistic model building procedure of the extended compact genetic algorithm (eCGA). The model sampling procedure of eCGA, which mimics the behavior of an idealized recombination---where the building blocks (BBs) are exchanged without disruption---is used as the competent crossover operator. On the other hand, a recently proposed BB-wise mutation operator---which uses the BB partition information to perform local search in the BB space---is used as the competent mutation operator. The resulting algorithm, called hybrid extended compact genetic algorithm (heCGA), makes use of the problem decomposition information for (1) effective recombination of BBs and (2) effective local search in the BB neighborhood. The proposed approach is tested on different problems that combine the core of three well known problem difficulty dimensions: deception, scaling, and noise. The results show that, in the absence of domain knowledge, the hybrid approach is more robust than either single-operator-based approach.

[1]  David E. Goldberg,et al.  Designing Competent Mutation Operators Via Probabilistic Model Building of Neighborhoods , 2004, GECCO.

[2]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[3]  Alden H. Wright,et al.  Efficient Linkage Discovery by Limited Probing , 2003, Evolutionary Computation.

[4]  William M. Spears,et al.  Crossover or Mutation? , 1992, FOGA.

[5]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[6]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[7]  Franz Rothlauf,et al.  Evaluation-Relaxation Schemes for Genetic and Evolutionary Algorithms , 2004 .

[8]  David E. Goldberg,et al.  Efficiency enhancement of genetic algorithms via building-block-wise fitness estimation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[9]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .

[10]  David E. Goldberg,et al.  Linkage Identification by Non-monotonicity Detection for Overlapping Functions , 1999, Evolutionary Computation.

[11]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[12]  Peter A. N. Bosman,et al.  Design and Application of iterated Density-Estimation Evolutionary Algorithms , 2003 .

[13]  David E. Goldberg,et al.  Introducing Start Expression Genes to the Linkage Learning Genetic Algorithm , 2002, PPSN.

[14]  Heinz Mühlenbein,et al.  How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.

[15]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[16]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[17]  David E. Goldberg,et al.  Genetic Algorithm Design Inspired by Organizational Theory: Pilot Study of a Dependency Structure Matrix Driven Genetic Algorithm , 2003, GECCO.

[18]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[19]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[20]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[21]  Hussein A. Abbass,et al.  Sub-structural Niching in Non-stationary Environments , 2004, Australian Conference on Artificial Intelligence.

[22]  Kalyanmoy Deb,et al.  Analyzing Deception in Trap Functions , 1992, FOGA.

[23]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[24]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[25]  Hillol Kargupta,et al.  The Gene Expression Messy Genetic Algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[26]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[27]  David E. Goldberg,et al.  Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence , 2000, GECCO.

[28]  Martin Pelikan,et al.  Fitness Inheritance in the Bayesian Optimization Algorithm , 2004, GECCO.

[29]  Kalyanmoy Deb,et al.  Optimization for Engineering Design: Algorithms and Examples , 2004 .

[30]  David E. Goldberg,et al.  Computer-aided pipeline operation using genetic algorithms and rule learning. PART II: Rule learning control of a pipeline under normal and abnormal conditions , 1987, Engineering with Computers.

[31]  David E. Goldberg,et al.  Let's Get Ready to Rumble: Crossover Versus Mutation Head to Head , 2004, GECCO.

[32]  David E. Goldberg,et al.  Optimizing Global-Local Search Hybrids , 1999, GECCO.

[33]  Thomas Bäck,et al.  Evolutionary Algorithms: The Role of Mutation and Recombination , 2000 .

[34]  Kalyanmoy Deb,et al.  RapidAccurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms , 1993, ICGA.

[35]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[36]  David E. Goldberg,et al.  The Race, the Hurdle, and the Sweet Spot , 1998 .

[37]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[38]  Dirk V. Arnold,et al.  Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.

[39]  David E. Goldberg,et al.  Learning Linkage , 1996, FOGA.

[40]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[41]  David E. Goldberg,et al.  Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .

[42]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[43]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[44]  W. Hart Adaptive global optimization with local search , 1994 .

[45]  David E. Goldberg,et al.  Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..

[46]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .