Adaptive synchronization of fractional order systems of the Lorenz type

This paper presents the synchronization analysis of two fractional order systems of the Lorenz type, with unknown parameters. The study was done through simulations in order to understand the mechanisms involved in this synchronization process for later use in the derivation of analytical techniques. The study includes adaptive synchronization between two fractional order systems of the Lorenz type using integer and fractional adaptive laws. Simulation results are shown for the synchronization of integer systems with fractional adaptive laws, and for the synchronization of fractional order systems with integer and fractional adaptive laws.

[1]  Ruoxun Zhang,et al.  Adaptive synchronization of fractional-order chaotic systems via a single driving variable , 2011 .

[2]  Julien Clinton Sprott,et al.  Bifurcations and Chaos in fractional-Order Simplified Lorenz System , 2010, Int. J. Bifurc. Chaos.

[3]  Parlitz,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical Review Letters.

[4]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[5]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[6]  Jian-ping Yan,et al.  Generalized projective synchronization for the chaotic Lorenz system and the chaotic Chen system , 2006 .

[7]  Nathalie Corson,et al.  Synchronization of Chaotic fractional-Order Systems via Linear Control , 2010, Int. J. Bifurc. Chaos.

[8]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[9]  Guohui Li,et al.  An observer-based anti-synchronization , 2006 .

[10]  Z. Guan,et al.  Generalized synchronization of continuous chaotic system , 2006 .

[11]  Shangbo Zhou,et al.  Chaos synchronization of the fractional-order Chen's system , 2009 .

[12]  Zheng-Ming Ge,et al.  Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal , 2008 .

[13]  Guohui Li,et al.  Generalized projective synchronization of two chaotic systems by using active control , 2006 .

[14]  Tae H. Lee,et al.  Functional projective lag synchronization of chaotic systems with disturbances , 2010 .

[15]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[16]  Henk Nijmeijer,et al.  An observer for phase synchronization of chaos , 2001 .

[17]  Yaolin Jiang,et al.  Generalized projective synchronization of fractional order chaotic systems , 2008 .

[18]  Hao Zhu,et al.  Chaos and synchronization of the fractional-order Chua’s system , 2009 .

[19]  杨世平,et al.  Adaptive synchronisation of fractional-order chaotic systems , 2010 .

[20]  K. Yin,et al.  Adaptive Synchronization of the Fractional-Order Chaotic Systems with Unknown Parameters , 2010, 2010 International Conference on Electrical and Control Engineering.

[21]  Ping Zhou,et al.  Generalized Projective Synchronization for Fractional-Order Chaotic Systems with Different Fractional Order , 2011 .

[22]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[23]  Walter J. Freeman,et al.  Characteristics of the Synchronization of Brain Activity imposed by Finite conduction Velocities of axons , 2000, Int. J. Bifurc. Chaos.

[24]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[25]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[26]  Junwei Wang,et al.  Chaos Control of a Fractional-Order Financial System , 2010 .

[27]  E. Lorenz Deterministic nonperiodic flow , 1963 .