Epidemic Predictability in Meta-Population Models with Heterogeneous Couplings: the Impact of Disease Parameter Values

We study the predictability of epidemic forecasts in a data-driven meta-population model considering the complete air transportation system and the associated urban areas. We define the predictabil...

[1]  N. Ferguson,et al.  Planning for smallpox outbreaks , 2003, Nature.

[2]  R M May,et al.  Spatial, temporal, and genetic heterogeneity in host populations and the design of immunization programmes. , 1984, IMA journal of mathematics applied in medicine and biology.

[3]  B. Bolker,et al.  Chaos and biological complexity in measles dynamics , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  G. Glass,et al.  Assessing the impact of airline travel on the geographic spread of pandemic influenza , 2003 .

[5]  M. Keeling,et al.  Estimating spatial coupling in epidemiological systems: a mechanistic approach , 2002 .

[6]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[7]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Geisel,et al.  Forecast and control of epidemics in a globalized world. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  A. Flahault,et al.  A method for assessing the global spread of HIV-1 infection based on air travel. , 1992, Mathematical population studies.

[10]  A. Nizam,et al.  Containing Pandemic Influenza at the Source , 2005, Science.

[11]  Roy M. Anderson,et al.  Spatial heterogeneity and the design of immunization programs , 1984 .

[12]  D. Cummings,et al.  Strategies for containing an emerging influenza pandemic in Southeast Asia , 2005, Nature.

[13]  L. A. Rvachev,et al.  A mathematical model for the global spread of influenza , 1985 .

[14]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[15]  J. Hyman,et al.  Scaling laws for the movement of people between locations in a large city. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  HERBERT A. SIMON,et al.  The Architecture of Complexity , 1991 .

[17]  A. Vespignani,et al.  The Modeling of Global Epidemics: Stochastic Dynamics and Predictability , 2006, Bulletin of mathematical biology.

[18]  R. Guimerà,et al.  The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  I. Longini A mathematical model for predicting the geographic spread of new infectious agents , 1988 .

[20]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[21]  Grenfell,et al.  Cities and villages: infection hierarchies in a measles metapopulation , 1998 .

[22]  A L Lloyd,et al.  Spatial heterogeneity in epidemic models. , 1996, Journal of theoretical biology.

[23]  B Grenfell,et al.  Space, persistence and dynamics of measles epidemics. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  Roger Guimerà,et al.  Modeling the world-wide airport network , 2004 .

[25]  Alessandro Vespignani,et al.  The role of the airline transportation network in the prediction and predictability of global epidemics , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. H. Ellis,et al.  Modeling the Spread of Annual Influenza Epidemics in the U.S.: The Potential Role of Air Travel , 2004, Health care management science.