Pareto Regression: A Bayesian Analysis
暂无分享,去创建一个
[1] A. H. Moore,et al. A comparison of estimation techniques for the three parameter pareto distribution , 1988 .
[2] Seymour Geisser. Interval prediction for Pareto and exponential observables , 1985 .
[3] Large sample estimation of Pareto quantiles using selected order statistics , 1985 .
[4] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[5] A. M. Nigm,et al. Bayesian prediction bounds for the pareto lifetime model , 1987 .
[6] A. Saleh,et al. Estimating survivor function using optimally selected order statistics , 1991 .
[7] Kerstin Vännman,et al. Estimators Based on Order Statistics from a Pareto Distribution , 1976 .
[8] U. Dale,et al. Estimating pareto quantiles using two order statistics , 1981 .
[9] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[10] T. Liang. Convergence rates for empirical Bayes estimation of the scale parameter in a Pareto distribution , 1993 .
[11] B. Arnold,et al. Bayesian Estimation and Prediction for Pareto Data , 1989 .
[12] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[13] Farrokh Nourzad. Real money balances and production efficiency: a panel-data stochastic production frontier study , 2002 .
[14] John Geweke,et al. Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .
[15] Adrian F. M. Smith,et al. Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms , 1994 .
[16] Dale Umbach,et al. On inference for a mixture of a poisson and a degenerate distribution , 1981 .
[17] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[18] Carl M. Harris,et al. The Pareto Distribution as a Queue Service Discipline , 1968, Oper. Res..
[19] B. Arnold,et al. BAYESIAN ANALYSIS FOR CLASSICAL DISTRIBUTIONS USING CONDITIONALLY SPECIFIED PRIORS , 1998 .
[20] Efthymios G. Tsionas,et al. Posterior analysis, prediction and reliability in three-parameter weibull distributions , 2000 .