Pareto Regression: A Bayesian Analysis

Abstract In this article, a new model is presented that is based on the Pareto distribution of the second kind, when the location parameter depends on covariates as well as unobserved heterogeneity. Bayesian analysis of the model can be performed using Markov Chain Monte Carlo techniques. The new procedures are illustrated in the context of artificial data as well as international output data.

[1]  A. H. Moore,et al.  A comparison of estimation techniques for the three parameter pareto distribution , 1988 .

[2]  Seymour Geisser Interval prediction for Pareto and exponential observables , 1985 .

[3]  Large sample estimation of Pareto quantiles using selected order statistics , 1985 .

[4]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[5]  A. M. Nigm,et al.  Bayesian prediction bounds for the pareto lifetime model , 1987 .

[6]  A. Saleh,et al.  Estimating survivor function using optimally selected order statistics , 1991 .

[7]  Kerstin Vännman,et al.  Estimators Based on Order Statistics from a Pareto Distribution , 1976 .

[8]  U. Dale,et al.  Estimating pareto quantiles using two order statistics , 1981 .

[9]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[10]  T. Liang Convergence rates for empirical Bayes estimation of the scale parameter in a Pareto distribution , 1993 .

[11]  B. Arnold,et al.  Bayesian Estimation and Prediction for Pareto Data , 1989 .

[12]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[13]  Farrokh Nourzad Real money balances and production efficiency: a panel-data stochastic production frontier study , 2002 .

[14]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[15]  Adrian F. M. Smith,et al.  Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms , 1994 .

[16]  Dale Umbach,et al.  On inference for a mixture of a poisson and a degenerate distribution , 1981 .

[17]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[18]  Carl M. Harris,et al.  The Pareto Distribution as a Queue Service Discipline , 1968, Oper. Res..

[19]  B. Arnold,et al.  BAYESIAN ANALYSIS FOR CLASSICAL DISTRIBUTIONS USING CONDITIONALLY SPECIFIED PRIORS , 1998 .

[20]  Efthymios G. Tsionas,et al.  Posterior analysis, prediction and reliability in three-parameter weibull distributions , 2000 .