Nonlinear elasticity of auxetic open cell foams modeled as continuum solids

Structure evolution during deformation of isotropic auxetic foams is investigated by simple compression experiments. It is shown that the main feature observed in the experimental data can be accurately described by an isotropic hyperelastic model with an Ogden-type strain energy function. The model can be easily implemented in a finite element code and, hence, can be used to simulate foams undergoing complex structural deformations.

[1]  Simon Ameer-Beg,et al.  An Auxetic Filter: A Tuneable Filter Displaying Enhanced Size Selectivity or Defouling Properties , 2000 .

[2]  Luzhuo Chen,et al.  Auxetic materials with large negative Poisson's ratios based on highly oriented carbon nanotube structures , 2009 .

[3]  R. Lakes Advances in negative Poisson's ratio materials , 1993 .

[4]  K. Evans,et al.  Models for the elastic deformation of honeycombs , 1996 .

[5]  Taeyong Lee,et al.  Re-entrant transformation methods in closed cell foams , 1996 .

[6]  Kenneth E. Evans,et al.  Mass transport properties of auxetic (negative Poisson's ratio) foams , 2007 .

[7]  Ruben Gatt,et al.  On the effect of heat and solvent exposure on the microstructure properties of auxetic foams: A preliminary study , 2011 .

[8]  T. Lim Auxetic Materials and Structures , 2014 .

[9]  Joseph N. Grima,et al.  Modelling of the mechanical and mass transport properties of auxetic molecular sieves: an idealised organic (polymeric honeycomb) host–guest system , 2005 .

[10]  Joseph N. Grima,et al.  Novel honeycombs with auxetic behaviour , 2005 .

[11]  K. Evans,et al.  Auxetic Materials : Functional Materials and Structures from Lateral Thinking! , 2000 .

[12]  Fabrizio Scarpa,et al.  Stiffness and energy dissipation in polyurethane auxetic foams , 2008 .

[13]  J. Smardzewski,et al.  Computer simulations of auxetic foams in two dimensions , 2013 .

[14]  Fabrizio Scarpa,et al.  Dynamic crushing of auxetic open-cell polyurethane foam , 2002 .

[15]  Kenneth E. Evans,et al.  Fabrication methods for auxetic foams , 1997 .

[16]  Fabrizio Scarpa,et al.  Shape memory behaviour in auxetic foams: mechanical properties , 2010 .

[17]  Fabrizio Scarpa,et al.  Novel generation of auxetic open cell foams for curved and arbitrary shapes , 2011 .

[18]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[19]  Ruben Gatt,et al.  Negative Poisson's ratios in cellular foam materials , 2006 .

[20]  K. Wojciechowski,et al.  Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers , 1987 .

[21]  Deformation produced by a simple tensile load in an isotropic elastic body , 1976 .

[22]  F. Scarpa,et al.  Compressive uniaxial properties of auxetic open cell PU based foams , 2009 .

[23]  R. Lakes,et al.  Indentability of Conventional and Negative Poisson's Ratio Foams , 1992 .

[24]  M. Boyce,et al.  A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .

[25]  F. Scarpa,et al.  Acoustic Properties Of Auxetic Foams , 2012 .

[26]  Fabrizio Scarpa,et al.  Dynamic properties of high structural integrity auxetic open cell foam , 2004 .

[27]  R. Lakes,et al.  Hysteresis Behaviour and Specific Damping Capacity of Negative Poisson's Ratio Foams , 1996, Cellular Polymers.

[28]  Massimo Ruzzene,et al.  Auxetic compliant flexible PU foams: static and dynamic properties , 2005 .

[29]  A. DeSimone,et al.  Ogden-type energies for nematic elastomers , 2012 .

[30]  Joseph N. Grima,et al.  Modelling of the mechanical and mass transport properties of auxetic molecular sieves: an idealised inorganic (zeolitic) host–guest system , 2005 .

[31]  A. Alderson,et al.  Manufacture and characterisation of thin flat and curved auxetic foam sheets , 2012 .

[32]  G. Saccomandi,et al.  A continuum hyperelastic model for auxetic materials , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Alan Plumtree,et al.  Modelling compressive cyclic stress–strain behaviour of structural foam , 2001 .

[34]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[35]  Kenneth E. Evans,et al.  Indentation Resilience of Conventional and Auxetic Foams , 1998 .

[36]  P. Prendergast,et al.  Examination of acoustic behavior of negative poisson's ratio materials , 1991 .

[37]  Ruben Gatt,et al.  A Novel Process for the Manufacture of Auxetic Foams and for Their re‐Conversion to Conventional Form , 2009 .

[38]  Fabrizio Scarpa,et al.  Tensile fatigue of conventional and negative Poisson’s ratio open cell PU foams , 2009 .

[39]  Fabrizio Scarpa,et al.  Vibration transmissibility and damping behaviour for auxetic and conventional foams under linear and nonlinear regimes , 2013 .

[40]  Kenneth E. Evans,et al.  How to make auxetic fibre reinforced composites , 2005 .

[41]  Fabrizio Scarpa,et al.  Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading , 2007 .

[42]  R. Ogden,et al.  On the deformation of solid and tubular cylinders of incompressible isotropic elastic material , 1972 .

[43]  R. D. Widdle,et al.  Measurement of the Poisson’s ratio of flexible polyurethane foam and its influence on a uniaxial compression model , 2008 .