The radio-frequency dielectric properties of yeast cells measured with a rapid, automated, frequency-domain dielectric spectrometer

Summary o (1) A computerized, rapid-scanning, frequency-domain dielectric spectrometer, capable of operating in the range 5 Hz-13 MHz, and based on commercially available components, is described. (2) Measurements of the passive electrical properties of yeast cells in the range 0.01–13 MHz confirm the well-docomented existence of a pronounced Maxwell-Wagner (β-) dispersion. The use of both complex permittivity (Cole/Cole) and complex conductivity diagrams indicated that dielectric relaxations centred at frequencies somewhat higher than those attainable contribute to the β-dispersion. (3) The data obtained at different concentrations of the suspended phase are compared with the predictions of several suspension equations, some previously untested, and are found to be in excellent accord with them, even at volume fractions as high as 0.4.

[1]  H. Schwan Electrical properties of tissue and cell suspensions. , 1957, Advances in biological and medical physics.

[2]  Joseph G. Hoffman,et al.  Physical Techniques in Biological Research , 1963 .

[3]  M. Sluyters-Rehbach,et al.  A high-precision network analyzer system for the measurement of the electrode impedance of both stationary and non-stationary electrode, with special attention to the dropping mercury electrode , 1980 .

[4]  JOHN W. Moore Membranes, ions, and impulses , 1976 .

[5]  U. Zimmermann,et al.  Electric field-mediated fusion and related electrical phenomena. , 1982, Biochimica et biophysica acta.

[6]  H. Coster,et al.  The molecular organisation of bimolecular lipid membranes. The dielectric structure of the hydrophilic/hydrophobic interface. , 1981, Biochimica et biophysica acta.

[7]  H. P. Schwan,et al.  Electrical Properties of Mitochondrial Membranes , 1960, The Journal of biophysical and biochemical cytology.

[8]  H. Coster,et al.  The molecular organisation of bimolecular lipid membranes. A study of the low frequency Maxwell-Wagner impedance dispersion. , 1974, Biochimica et biophysica acta.

[9]  J. Berriman,et al.  The charging capacitance of the chromatophore membrane , 1978, FEBS letters.

[10]  O. H. Schmitt,et al.  Automated measurement of bioelectric impedance at very low frequencies. , 1974, Computers and biomedical research, an international journal.

[11]  R P Scobey,et al.  Computer interface and algorithm determines bioelectrode impedance. , 1981, Computer programs in biomedicine.

[12]  Haruki Nakamura,et al.  Time domain measurement of dielectric spectra of aqueous polyelectrolyte solutions at low frequencies , 1981 .

[13]  A. A. Pilla,et al.  Laplace plane analysis of the faradaic and non-faradaic impedance of the mercury electrode , 1972 .

[14]  A. Pilla,et al.  Dynamic Interfacial Electrochemical Phenomena at Living Cell Membranes: Application to the Toad Urinary Bladder Membrane System , 1977 .

[15]  D. Franceschetti,et al.  Interfacial phenomena of some fluorites , 1981 .

[16]  R. Hayakawa,et al.  New method for simultaneous measurement of frequency spectra of complex dielectric constants of polyelectrolyte solutions. , 1980, Biophysical chemistry.

[17]  D. Kell,et al.  The protonmotive force in phosphorylating membrane vesicles from Paracoccus denitrificans. Magnitude, sites of generation and comparison with the phosphorylation potential. , 1978, The Biochemical journal.

[18]  C. Boned,et al.  Automatic measurement of complex permittivity (from 2 MHz to 8 GHz) using time domain spectroscopy , 1982 .

[19]  H. Fricke,et al.  An Experimental Study of the Electrical Conductivity of Disperse Systems. I. Cream , 1925 .

[20]  Charles W. Tobias,et al.  On the Conductivity of Dispersions , 1959 .

[21]  S. Dukhin,et al.  Dielectric phenomena and the double layer in disperse systems and polyelectrolytes , 1974 .

[22]  F. A. Grant Use of Complex Conductivity in the Representation of Dielectric Phenomena , 1958 .

[23]  T. E. Thompson,et al.  Dielectric studies on homogeneous phosphatidylcholine vesicles. , 1972, Biochimica et biophysica acta.

[24]  H. Curtis,et al.  Electric Impedance of Suspensions of Yeast Cells , 1934, Nature.

[25]  K. Foster,et al.  Dielectric properties of mammalian tissues from 0.1 to 100 MHz: a summary of recent data. , 1982, Physics in medicine and biology.

[26]  H. Schwan,et al.  Dielectric properties and ion mobility in erythrocytes. , 1966, Biophysical journal.

[27]  F. Palmieri Vectorial reactions in electron and ion transport in mitochondria and bacteria : proceedings of the International Symposium on Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria, held in Selva di Fasano (Italy) May 19-22, 1981 , 1981 .

[28]  Claude Gabrielli,et al.  Progres recents dans la mesure des impedances electrochimiques en regime sinusoidal , 1974 .

[29]  Haruki Nakamura,et al.  An Application of Fourier Synthesis to Pseudorandom Noise Dielectric Spectrometer , 1977 .

[30]  Stuchly,et al.  DIELECTRIC PROPERTIES OF BIOLOGICAL SUBSTANCES–TABULATED , 1980 .

[31]  H. Schwan,et al.  Electrical properties of phospholipid vesicles. , 1970, Biophysical journal.

[32]  E. Carstensen,et al.  Passive electrical properties of microorganisms. IV. Studies of the protoplasts of Micrococcus lysodeikticus. , 1969, Biophysical journal.

[33]  Louis J. DeFelice,et al.  Introduction to membrane noise , 1981 .

[34]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[35]  R J Sheppard,et al.  Dielectric behaviour of biological molecules in solution , 1978 .

[36]  Charles W. Tobias,et al.  Conductivities in Emulsions , 1961 .

[37]  E Ackerman,et al.  Automated impedence: a case study in microprocessor programming. , 1981, Computers in biology and medicine.

[38]  S. Koga,et al.  DIELECTRIC BEHAVIOR OF YEAST CELLS IN SUSPENSION , 1964 .

[39]  H. M. Fishman,et al.  Ion movements and kinetics in squid axon I. Complex admittance. , 1977, Annals of the New York Academy of Sciences.

[40]  Ronald Pethig,et al.  Dielectric and electronic properties of biological materials , 1979 .

[41]  H. Pauly,et al.  The Relationship of Internal Conductance and Membrane Capacity to Mitochondrial Volume , 1960, The Journal of biophysical and biochemical cytology.

[42]  R. Cole,et al.  Evaluation of dielectric behavior by time domain spectroscopy. II. Complex permittivity , 1975 .

[43]  G. Schwarz A THEORY OF THE LOW-FREQUENCY DIELECTRIC DISPERSION OF COLLOIDAL PARTICLES IN ELECTROLYTE SOLUTION1,2 , 1962 .

[44]  D. Kell,et al.  Measurement by a flow dialysis technique of the steady-state proton-motive force in chromatophores from Rhodospirillum rubrum. Comparison with phosphorylation potential. , 1978, Biochimica et biophysica acta.

[45]  D. J. Bell,et al.  A computer based, four terminal impedance measuring system for low frequencies (designed for plasma membrane of living cells) , 1975 .

[46]  O. Schanne,et al.  Impedance measurements in biological cells , 1978 .

[47]  R. Cole Evaluation of dielectric behavior by time domain spectroscopy. I. Dielectric response by real time analysis , 1975 .

[48]  D B Kell,et al.  On the functional proton current pathway of electron transport phosphorylation. An electrodic view. , 1979, Biochimica et biophysica acta.

[49]  T. Hanai,et al.  Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization. , 1980, Biophysical journal.