Homogeneous Sub-Riemannian Geodesics on a Group of Motions of the Plane

В римановой геометрии известны понятия однородных геодезических и геодезически орбитальных пространств [1, 2]. В субримановой геометрии они практически не исследованы, нам известна на эту тему только работа [3]. Цель данной заметки — изучение этих свойств для стандартной субримановой структуры на группе собственных движений плоскости, включая их связь с инвариантностью времени разреза при сдвиге начальной точки вдоль геодезических.

[1]  Y. Sachkov,et al.  Cut time in sub-Riemannian problem on Engel group , 2014, 1408.6651.

[2]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[3]  Yu. L. Sachkov,et al.  Maxwell strata in sub-Riemannian problem on the group of motions of a plane , 2008, 0807.4731.

[4]  J. Szenthe,et al.  On the Existence of Homogeneous Geodesics in Homogeneous Riemannian Manifolds , 2000 .

[5]  R. Montgomery,et al.  Bicycle paths, elasticae and sub-Riemannian geometry , 2020, 2010.04201.

[6]  Francesco Rossi,et al.  Invariant Carnot--Caratheodory Metrics on S3, SO(3), SL(2), and Lens Spaces , 2007, SIAM J. Control. Optim..

[7]  L. Vanhecke,et al.  Riemannian-manifolds with homogeneous geodesics , 1991 .

[8]  U. Boscain,et al.  A Comprehensive Introduction to Sub-Riemannian Geometry , 2019 .

[9]  Yuri L. Sachkov Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane , 2010 .

[10]  A. Kaplan On the Geometry of Groups of Heisenberg Type , 1983 .

[11]  Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group SH(2) , 2015, 1507.02719.

[12]  Valera Berestovskii (Locally) shortest arcs of special sub-Riemannian metric on the Lie group SO(3) , 2014 .

[13]  Nilpotent (3, 6) Sub-Riemannian Problem , 2002 .

[14]  Y. Sachkov,et al.  Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane , 2011 .

[15]  Eero Hakavuori,et al.  Cut time in the sub-Riemannian problem on the Cartan group , 2021, ESAIM: Control, Optimisation and Calculus of Variations.