Introduction to Switched Circuits

This section is dedicated to introduce simple circuits that contain electronic devices with a nonsmooth current/voltage characteristic. Examples are RLC circuits with so-called ideal diodes, ideal Zener diodes, ideal switches. The main peculiarities of their dynamics are highlighted through detailed analysis. The parallel with simple nonsmooth mechanical systems is made. Last, but not least, the numerical method that will be used in the remainder of the book is introduced.

[1]  W. P. M. H. Heemels,et al.  The Complementarity Class of Hybrid Dynamical Systems , 2003, Eur. J. Control.

[2]  Kamal Al-Haddad,et al.  A comprehensive approach to fixed-step simulation of switched circuits , 2002 .

[3]  Y.-T. Hsiao,et al.  A fast-decoupled method for time-domain simulation of power converters , 1988, PESC '88 Record., 19th Annual IEEE Power Electronics Specialists Conference.

[4]  Peter Maißer,et al.  Modelling Electromechanical Systems with Electrical Switching Components Using the Linear Complementarity Problem , 2005 .

[5]  M. Marques Differential Inclusions in Nonsmooth Mechanical Problems , 1993 .

[6]  Leon O. Chua,et al.  Canonical piecewise-linear analysis , 1983 .

[7]  Christoph Glocker,et al.  Non-smooth modelling of electrical systems using the flux approach , 2007 .

[8]  M. Marques,et al.  Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction , 1993 .

[9]  Leon O. Chua,et al.  Canonical piecewise-linear analysis- II: Tracing driving-point and transfer characteristics , 1985 .

[10]  Daniel Goeleven,et al.  Existence and Uniqueness for a Linear Mixed Variational Inequality Arising in Electrical Circuits with Transistors , 2008 .

[11]  Marco Storace,et al.  A procedure for the computation of accurate PWL approximations of non-linear dynamical systems , 2006, Int. J. Circuit Theory Appl..

[12]  D. Biolek,et al.  Computer Simulation of Continuous-Time and Switched Circuits: Limitations of SPICE-Family Programs and Pending Issues , 2007, 2007 17th International Conference Radioelektronika.

[13]  Jirí Vlach,et al.  Swann-a programme for analysis of switched analogue non-linear networks , 1995, Int. J. Circuit Theory Appl..

[14]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[15]  P. Lin,et al.  Analysis of piecewise-linear resistive networks using complementary pivot theory , 1981 .

[16]  Ernest S. Kuh,et al.  A sparse matrix method for analysis of piecewise-linear resistive networks , 1972 .

[17]  A. Opal,et al.  Modern CAD methods for analysis of switched networks , 1997 .

[18]  M. Kanat Camlibel,et al.  On Linear Passive Complementarity Systems , 2002, Eur. J. Control.

[19]  Vincent Acary,et al.  Higher order Moreau’s sweeping process: mathematical formulation and numerical simulation , 2008, Math. Program..

[20]  Fabrizio Palma,et al.  Discontinuity correction in piecewise‐linear models of oscillators for phase noise characterization , 2007, Int. J. Circuit Theory Appl..

[21]  W. G. Bliss,et al.  A switched-capacitor realization of discrete-time block filters , 1992, [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems.

[22]  M. T. van Stiphout PLATO : a piecewise linear analysis tool for mixed-level circuit simulation , 1990 .

[23]  Daniel Goeleven,et al.  The Krakovskii-LaSalle Invariance Principle for a Class of Unilateral Dynamical Systems , 2005, Math. Control. Signals Syst..

[24]  A. Opal,et al.  Analysis of nonlinear networks with inconsistent initial conditions , 1995 .

[25]  Khalid Addi,et al.  A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics , 2007 .

[26]  Wolfgang Desch,et al.  Progress in nonlinear differential equations and their applications, Vol. 80 , 2011 .

[27]  Shuning Wang,et al.  A novel compact piecewise-linear representation , 2005, Int. J. Circuit Theory Appl..

[28]  Shen-Iuan Liu,et al.  A Fully Differential Comparator-Based Switched-Capacitor $\Delta\Sigma$ Modulator , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[29]  A. Opal,et al.  Computer methods for switched circuits , 2003 .

[30]  Daniel Goeleven,et al.  Stability and instability matrices for linear evolution variational inequalities , 2004, IEEE Transactions on Automatic Control.

[31]  Jiri Vlach,et al.  Computer oriented formulation of equations and analysis of switched-capacitor networks , 1984 .

[32]  Domine M. W. Leenaerts,et al.  Piecewise Linear Modeling and Analysis , 1998 .

[33]  Bernard Brogliato Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings , 2004, Syst. Control. Lett..

[34]  Kiyotaka Yamamura,et al.  CFAR detection of weak target in clutter using chaos synchronization , 2008 .

[35]  Ralf Wunderlich,et al.  Modeling Approaches for Functional Verification of RF-SoCs: Limits and Future Requirements , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[36]  Kartikeya Mayaram,et al.  Computer-aided circuit analysis tools for RFIC simulation: algorithms, features, and limitations , 2000 .

[37]  George C. Verghese,et al.  Modeling and simulation of power electronic converters , 2001, Proc. IEEE.

[38]  C. Glocker Set-Valued Force Laws: Dynamics of Non-Smooth Systems , 2012 .

[39]  B. Brogliato,et al.  Well-posedness, stability and invariance results for a class of multivalued Lur'e dynamical systems , 2011 .

[40]  Khalid Addi,et al.  A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems: applications in electronics , 2011, Math. Program..

[41]  W.P.M.H. Heemels,et al.  A time-stepping method for relay systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[42]  Jirí Vlach,et al.  Analysis of switched networks , 1992, Int. J. Circuit Theory Appl..

[43]  L. Chua,et al.  A global representation of multidimensional piecewise-linear functions with linear partitions , 1978 .

[44]  Van Bokhoven Piecewise-linear modelling and analysis , 1981 .

[45]  W. Heemels,et al.  Consistency of a time-stepping method for a class of piecewise-linear networks , 2002 .

[46]  Domine M. W. Leenaerts On linear dynamic complementary systems , 1999 .

[47]  M. Çamlibel,et al.  A New Perspective for Modeling Power Electronics Converters: Complementarity Framework , 2009, IEEE Transactions on Power Electronics.

[48]  Pedro Julián,et al.  Synthesis of multiport resistors with piecewise-linear characteristics: a mixed-signal architecture , 2005, Int. J. Circuit Theory Appl..

[49]  Paolo Maffezzoni,et al.  Event-Driven Time-Domain Simulation of Closed-Loop Switched Circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[50]  J. Vlach,et al.  Analysis and steady state of nonlinear networks with ideal switches , 1995 .

[51]  Ajoy Opal,et al.  Sampled data simulation of linear and nonlinear circuits , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[52]  B. Brogliato,et al.  Dissipative Systems Analysis and Control , 2000 .

[53]  M. Çamlibel Complementarity Methods in the Analysis of Piecewise Linear Dynamical Systems , 2001 .

[54]  D.M.W. Leenaerts,et al.  A comparison of piecewise-linear model descriptions , 1992 .

[55]  J. Vrana,et al.  SCISIP - Program for Switched Circuit Analysis in Matlab , 2006, 2006 IEEE International Behavioral Modeling and Simulation Workshop.

[56]  L. Vandenberghe,et al.  The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits , 1989 .

[57]  Christoph Glocker,et al.  Models of non‐smooth switches in electrical systems , 2005, Int. J. Circuit Theory Appl..

[58]  Henry Shu-Hung Chung,et al.  Fast computer-aided simulation of switching power regulators based on progressive analysis of the switches' state , 1994 .

[59]  Johannes Schumacher,et al.  On event driven simulation of electrical circuits with ideal diodes , 2001 .

[60]  Enric Fossas,et al.  Generalized discontinuous conduction modes in the complementarity formalism , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[61]  Bernard Brogliato,et al.  Some perspectives on the analysis and control of complementarity systems , 2003, IEEE Trans. Autom. Control..