Properties and performance of extended target motion analysis

The problem of target motion analysis (TMA) has been the subject of an important literature. However, present methods use data estimated by a short time analysis (azimuths, Dopplers, etc.). For far sources, the nonstationarities of the array processing outputs, induced by the sources motion, may be simply modeled. This model leads one to consider directly a spatio-temporal TMA. Then new (spatio-temporal) data can be estimated. These estimates correspond to a long time analysis. Further, note that they are estimated independently of the (classical) bearings. In this general framework, the concept of source trajectory replaces the classical instantaneous bearings. Corresponding TMA algorithms are then studied. Then the study of statistical performance is carefully studied.

[1]  Jean-Pierre Le Cadre,et al.  A new approach to the estimation of source motion parameters, part I , 1993, Signal Process..

[2]  Claude Jauffret Trajectographie passive, observabilite et prise en compte des fausses alarmes , 1993 .

[3]  J. L. Cadre,et al.  2 - Sur la précision d'estimation du défilement angulaire d'une source en mouvement , 1993 .

[4]  Yiu-Tong Chan,et al.  Bearings-only and Doppler-bearing tracking using instrumental variables , 1992 .

[5]  Salvatore D. Morgera,et al.  The role of abstract algebra in structured estimation theory , 1992, IEEE Trans. Inf. Theory.

[6]  Robert H. J. Gmelig Meyling,et al.  Maximum likelihood estimation for long-range target tracking using passive sonar measurements , 1992, IEEE Trans. Signal Process..

[7]  Ronald A. Iltis,et al.  Multitarget motion analysis in a DSN , 1991, IEEE Trans. Syst. Man Cybern..

[8]  Olivier Zugmeyer,et al.  Temporal integration for array processing , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[9]  J. L. Cadre,et al.  Intégration temporelle en traitement d'antenne , 1991 .

[10]  P. Dewilde,et al.  Singular value decomposition: an introduction , 1989 .

[11]  A. Payne Observability problem for bearings-only tracking , 1989 .

[12]  Y. Bar-Shalom Tracking and data association , 1988 .

[13]  K. Gong,et al.  Fundamental properties and performance of conventional bearings-only target motion analysis , 1984 .

[14]  W. Burdic Underwater Acoustic System Analysis , 1984 .

[15]  P. Lopez,et al.  01 - Estimation d'une matrice interspectrale de structure imposée. Applications , 1984 .

[16]  K. Arun,et al.  State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem , 1983 .

[17]  D. Luenberger,et al.  Estimation of structured covariance matrices , 1982, Proceedings of the IEEE.

[18]  E. Weinstein Optimal source localization and tracking from passive array measurements , 1982 .

[19]  V. Aidala,et al.  Observability Criteria for Bearings-Only Target Motion Analysis , 1981, IEEE Transactions on Aerospace and Electronic Systems.

[20]  M. D. Srinath,et al.  Nearfield performance of passive correlation processing sonars , 1978 .

[21]  K. Gong,et al.  Position and Velocity Estimation Via Bearing Observations , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[22]  D. Reid An algorithm for tracking multiple targets , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[23]  P. Faurre Stochastic Realization Algorithms , 1976 .

[24]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[25]  Kenneth S. Miller,et al.  Complex stochastic processes: an introduction to theory and application , 1974 .

[26]  A. Booth Numerical Methods , 1957, Nature.