Linear algebraic groups and countable Borel equivalence relations
暂无分享,去创建一个
[1] Su Gao. Some applications of the Adams-Kechris technique , 2001 .
[2] J. Humphreys,et al. Linear Algebraic Groups , 1975 .
[3] Alain Louveau,et al. A Glimm-Effros dichotomy for Borel equivalence relations , 1990 .
[4] Robert J. Zimmer,et al. Ergodic Theory and Semisimple Groups , 1984 .
[5] Joaquín Pascual,et al. Infinite Abelian Groups , 1970 .
[6] Scot Adams,et al. Trees and amenable equivalence relations , 1990, Ergodic Theory and Dynamical Systems.
[7] Gregory Margulis,et al. Discrete Subgroups of Semisimple Lie Groups , 1991 .
[8] Paul M. Weichsel,et al. ON p-ABELIAN GROUPS , 1967 .
[9] A. Kechris. Countable sections for locally compact group actions. II , 1994 .
[10] Alexander S. Kechris,et al. New Directions in Descriptive Set Theory , 1999, Bulletin of Symbolic Logic.
[11] R. Dougherty,et al. The structure of hy-per nite Borel equivalence relations , 1994 .
[12] Calvin C. Moore,et al. Ergodic equivalence relations, cohomology, and von Neumann algebras. II , 1977 .
[13] Jean-Pierre Serre. A Course in Arithmetic , 1973 .
[14] Indecomposability of treed equivalence relations , 1988 .
[15] Pierre de la Harpe,et al. La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .
[16] Alexander S. Kechris,et al. Countable sections for locally compact group actions , 1992, Ergodic Theory and Dynamical Systems.
[17] Edward G. Effros,et al. Transformation Groups and C ∗ -algebras , 1965 .
[18] A. L. Onishchik,et al. Foundations of Lie theory ; Lie transformation groups , 1993 .
[19] A. Kechris. Classical descriptive set theory , 1987 .
[20] J. Silver,et al. Counting the number of equivalence classes of Borel and coanalytic equivalence relations , 1980 .
[21] Alain Louveau,et al. Countable Borel Equivalence Relations , 2002, J. Math. Log..
[22] Y. Moschovakis. Descriptive Set Theory , 1980 .
[23] V. Varadarajan,et al. Groups of automorphisms of Borel spaces , 1963 .
[24] Greg Hjorth. Around nonclassifiability for countable torsion free abelian groups , 1999 .
[25] P. S. Aleksandrov,et al. An introduction to the theory of groups , 1960 .
[26] J. Feldman,et al. Orbit structure and countable sections for actions of continuous groups , 1978 .
[27] R. Ellis. Locally compact transformation groups , 1957 .
[28] Alain Louveau,et al. A note on Borel equivalence relations , 1994 .
[29] Greg Hjorth,et al. Borel Equivalence Relations and Classifications of Countable Models , 1996, Ann. Pure Appl. Log..
[30] Su Gao. SOME APPLICATIONS OF THE ADAMS-KECHRIS TECHNIQUE , 2000 .
[31] A. Kechris. The Structure of Borel Equivalence Relations in Polish Spaces , 1992 .
[32] Robert J. Zimmer,et al. Groups generating transversals to semisimple lie group actions , 1991 .
[33] Harvey M. Friedman,et al. A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.
[34] J. Dieudonné,et al. Sur les groupes classiques , 1967 .
[35] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[36] Klaus Schmidt,et al. Algebraic ideas in ergodic theory , 1990 .