Linear algebraic groups and countable Borel equivalence relations

This paper is a contribution to the study of Borel equivalence relations on standard Borel spaces (i.e., Polish spaces equipped with their Borel structure). In mathematics one often deals with problems of classification of objects up to some notion of equivalence by invariants. Frequently these objects can be viewed as elements of a standard Borel space X and the equivalence turns out to be a Borel equivalence relation E on X. A complete classification of X up to E consists of finding a set of invariants I and a map c : X → I such that xEy ⇔ c(x) = c(y). For this to be of any interest both I and c must be explicit or definable and as simple and concrete as possible. The theory of Borel equivalence relations studies the set-theoretic nature of possible invariants and develops a mathematical framework for measuring the complexity of such classification problems.

[1]  Su Gao Some applications of the Adams-Kechris technique , 2001 .

[2]  J. Humphreys,et al.  Linear Algebraic Groups , 1975 .

[3]  Alain Louveau,et al.  A Glimm-Effros dichotomy for Borel equivalence relations , 1990 .

[4]  Robert J. Zimmer,et al.  Ergodic Theory and Semisimple Groups , 1984 .

[5]  Joaquín Pascual,et al.  Infinite Abelian Groups , 1970 .

[6]  Scot Adams,et al.  Trees and amenable equivalence relations , 1990, Ergodic Theory and Dynamical Systems.

[7]  Gregory Margulis,et al.  Discrete Subgroups of Semisimple Lie Groups , 1991 .

[8]  Paul M. Weichsel,et al.  ON p-ABELIAN GROUPS , 1967 .

[9]  A. Kechris Countable sections for locally compact group actions. II , 1994 .

[10]  Alexander S. Kechris,et al.  New Directions in Descriptive Set Theory , 1999, Bulletin of Symbolic Logic.

[11]  R. Dougherty,et al.  The structure of hy-per nite Borel equivalence relations , 1994 .

[12]  Calvin C. Moore,et al.  Ergodic equivalence relations, cohomology, and von Neumann algebras. II , 1977 .

[13]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[14]  Indecomposability of treed equivalence relations , 1988 .

[15]  Pierre de la Harpe,et al.  La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .

[16]  Alexander S. Kechris,et al.  Countable sections for locally compact group actions , 1992, Ergodic Theory and Dynamical Systems.

[17]  Edward G. Effros,et al.  Transformation Groups and C ∗ -algebras , 1965 .

[18]  A. L. Onishchik,et al.  Foundations of Lie theory ; Lie transformation groups , 1993 .

[19]  A. Kechris Classical descriptive set theory , 1987 .

[20]  J. Silver,et al.  Counting the number of equivalence classes of Borel and coanalytic equivalence relations , 1980 .

[21]  Alain Louveau,et al.  Countable Borel Equivalence Relations , 2002, J. Math. Log..

[22]  Y. Moschovakis Descriptive Set Theory , 1980 .

[23]  V. Varadarajan,et al.  Groups of automorphisms of Borel spaces , 1963 .

[24]  Greg Hjorth Around nonclassifiability for countable torsion free abelian groups , 1999 .

[25]  P. S. Aleksandrov,et al.  An introduction to the theory of groups , 1960 .

[26]  J. Feldman,et al.  Orbit structure and countable sections for actions of continuous groups , 1978 .

[27]  R. Ellis Locally compact transformation groups , 1957 .

[28]  Alain Louveau,et al.  A note on Borel equivalence relations , 1994 .

[29]  Greg Hjorth,et al.  Borel Equivalence Relations and Classifications of Countable Models , 1996, Ann. Pure Appl. Log..

[30]  Su Gao SOME APPLICATIONS OF THE ADAMS-KECHRIS TECHNIQUE , 2000 .

[31]  A. Kechris The Structure of Borel Equivalence Relations in Polish Spaces , 1992 .

[32]  Robert J. Zimmer,et al.  Groups generating transversals to semisimple lie group actions , 1991 .

[33]  Harvey M. Friedman,et al.  A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.

[34]  J. Dieudonné,et al.  Sur les groupes classiques , 1967 .

[35]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[36]  Klaus Schmidt,et al.  Algebraic ideas in ergodic theory , 1990 .