Close look on cubic Tm:KY3F10 crystal for highly efficient lasing on the 3H4 → 3H5 transition.
暂无分享,去创建一个
A. Hideur | P. Loiko | L. Guillemot | R. Soulard | J. Doualan | A. Braud | P. Camy
[1] Xavier Mateos,et al. Fluorite-type Tm3+:KY3F10: A promising crystal for watt-level lasers at ∼1.9 μm , 2020 .
[2] A. Hideur,et al. Continuous-wave Tm:YAlO3 laser at ∼2.3 μm. , 2019, Optics letters.
[3] A. Hideur,et al. Efficient Tm:LiYF4 Lasers at ${\sim}2.3~\mu$ m: Effect of Energy-Transfer Upconversion , 2019, IEEE Journal of Quantum Electronics.
[4] A. Hideur,et al. Thulium laser at ∼2.3 μm based on upconversion pumping. , 2019, Optics letters.
[5] M. Tonelli,et al. Continuous-wave mid-infrared laser operation of Tm3+:KY3F10 at 2.3 μm. , 2019, Optics letters.
[6] D. Shen,et al. High efficiency nanosecond passively Q-switched 23 µm Tm:YLF laser using a ReSe2-based saturable output coupler , 2019, OSA Continuum.
[7] A. Hideur,et al. Laser operation of highly-doped Tm:LiYF4 epitaxies: towards thin-disk lasers. , 2019, Optics express.
[8] V. Plotnichenko,et al. Rare-earth ions doped zinc-tellurite glass for 2 ÷ 3 µm lasers , 2018, Applied Physics B.
[9] A. Sennaroğlu,et al. Low-Threshold Diode-Pumped 2.3-$\mu$ m Tm3+:YLF Lasers , 2018, IEEE Journal of Selected Topics in Quantum Electronics.
[10] A. Sennaroğlu,et al. Kerr-lens mode-locked 2.3-μm Tm3+:YLF laser as a source of femtosecond pulses in the mid-infrared. , 2017, Optics letters.
[11] Aleksey Tyazhev,et al. 2.3 μm Tm3+:YLF mode-locked laser. , 2017, Optics letters.
[12] A. Sennaroğlu,et al. 2.3-μm Tm3+:YLF laser passively Q-switched with a Cr2+:ZnSe saturable absorber. , 2017, Optics letters.
[13] Valentin Petrov,et al. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals , 2015 .
[14] Evgeni Sorokin,et al. Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration. , 2014, Optics express.
[15] M. Tonelli,et al. In-band pumped Ho3+:KY3Fi10 2 μm Laser , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.
[16] A. Schliesser,et al. Mid-infrared frequency combs , 2012, Nature Photonics.
[17] M. Schellhorn,et al. High-power diode-pumped Tm:YLF slab laser , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.
[18] W. Hofmann,et al. Optical Absorption Glucose Measurements Using 2.3-$\mu$m Vertical-Cavity Semiconductor Lasers , 2008, IEEE Photonics Technology Letters.
[19] H. Emerich,et al. Study of the temperature dependence of the structure of KY3F10 , 2006 .
[20] L. Cerutti,et al. Intracavity laser absorption spectroscopy with a vertical external cavity surface emitting laser at 2.3 μm: Application to water and carbon dioxide , 2005 .
[21] M. Jansen,et al. Refinement of the crystal structure of potassium triyttrium decafluoride, KY3F10 , 2002 .
[22] R. Moncorgé,et al. Spectroscopy and cw operation of a 1.85 μm Tm:KY3F10 laser , 2001 .
[23] Sylvain Girard,et al. Energy-transfer processes in Yb:Tm-doped KY 3 F 10 , LiYF 4 , and BaY 2 F 8 single crystals for laser operation at 1.5 and 2.3 μm , 2000 .
[24] S. Girard,et al. Synthesis and spectroscopic studies of Tm3+-doped KY3F10 single crystals , 2000 .
[25] Clifford R. Pollock,et al. Mode-locked Cr(2+):ZnSe laser. , 2000, Optics letters.
[26] S. Girard,et al. Excited-state absorption spectroscopy of Er 3 + -doped Y 3 Al 5 O 12 , YVO 4 , and phosphate glass , 1999 .
[27] G. Huber,et al. Diode-pumped continuous-wave, quasi-continuous-wave, and Q-switched laser operation of Yb3+,Tm3+: YLiF4 at 1.5 and 2.3 μm , 1998 .
[28] G. Huber,et al. Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3 , 1998 .
[29] Norman P. Barnes,et al. Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4 , 1998 .
[30] Steven B. Sutton,et al. 115-W Tm:YAG diode-pumped solid-state laser , 1997 .
[31] L. Esterowitz,et al. Tm(3+):YLF laser continuously tunable between 2.20 and 2.46 microm. , 1994, Optics letters.
[32] Jacquier,et al. Model of the photon-avalanche effect. , 1993, Physical review. B, Condensed matter.
[33] B. Aull,et al. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .
[34] P. Caro,et al. Crystal field parameters for Eu3+ in KY3F10. III. Radiative and nonradiative transition probabilities , 1978 .
[35] J. Nella,et al. Characteristics of room-temperature 2.3-µm laser emission from tm3+in YAG and YAlO3 , 1975, IEEE Journal of Quantum Electronics.