Close look on cubic Tm:KY3F10 crystal for highly efficient lasing on the 3H4 → 3H5 transition.

We report on Czochralski growth, detailed ground- and excited-state absorption and emission spectroscopy and highly-efficient mid-infrared (∼2.3 µm) laser operation of a cubic potassium yttrium fluoride crystal, Tm:KY3F10. The peak stimulated-emission cross-section for the 3H4 → 3H5 transition is 0.34×10-20 cm2 at 2345 nm with an emission bandwidth exceeding 50 nm. The excited-state absorption spectra for the 3F4 → 3F2,3 and 3F4 → 3H4 transitions are measured and the cross-relaxation is quantified. A continuous-wave 5 at.% Tm:KY3F10 laser generated 0.84 W at 2331-2346 nm by pumping at 773 nm, with a record-high slope efficiency of 47.7% (versus the incident pump power) owing to the efficient action of energy-transfer upconversion leading to a pump quantum efficiency approaching 2. The first Tm:KY3F10 laser with ESA-assisted upconversion pumping (at 1048 nm) is also demonstrated. Due to its broadband emission properties, Tm:KY3F10 is promising for ultrashort pulse generation at ∼2.3-2.4 µm.

[1]  Xavier Mateos,et al.  Fluorite-type Tm3+:KY3F10: A promising crystal for watt-level lasers at ∼1.9 μm , 2020 .

[2]  A. Hideur,et al.  Continuous-wave Tm:YAlO3 laser at ∼2.3  μm. , 2019, Optics letters.

[3]  A. Hideur,et al.  Efficient Tm:LiYF4 Lasers at ${\sim}2.3~\mu$ m: Effect of Energy-Transfer Upconversion , 2019, IEEE Journal of Quantum Electronics.

[4]  A. Hideur,et al.  Thulium laser at ∼2.3  μm based on upconversion pumping. , 2019, Optics letters.

[5]  M. Tonelli,et al.  Continuous-wave mid-infrared laser operation of Tm3+:KY3F10 at 2.3  μm. , 2019, Optics letters.

[6]  D. Shen,et al.  High efficiency nanosecond passively Q-switched 23 µm Tm:YLF laser using a ReSe2-based saturable output coupler , 2019, OSA Continuum.

[7]  A. Hideur,et al.  Laser operation of highly-doped Tm:LiYF4 epitaxies: towards thin-disk lasers. , 2019, Optics express.

[8]  V. Plotnichenko,et al.  Rare-earth ions doped zinc-tellurite glass for 2 ÷ 3 µm lasers , 2018, Applied Physics B.

[9]  A. Sennaroğlu,et al.  Low-Threshold Diode-Pumped 2.3-$\mu$ m Tm3+:YLF Lasers , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  A. Sennaroğlu,et al.  Kerr-lens mode-locked 2.3-μm Tm3+:YLF laser as a source of femtosecond pulses in the mid-infrared. , 2017, Optics letters.

[11]  Aleksey Tyazhev,et al.  2.3  μm Tm3+:YLF mode-locked laser. , 2017, Optics letters.

[12]  A. Sennaroğlu,et al.  2.3-μm Tm3+:YLF laser passively Q-switched with a Cr2+:ZnSe saturable absorber. , 2017, Optics letters.

[13]  Valentin Petrov,et al.  Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals , 2015 .

[14]  Evgeni Sorokin,et al.  Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration. , 2014, Optics express.

[15]  M. Tonelli,et al.  In-band pumped Ho3+:KY3Fi10 2 μm Laser , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[16]  A. Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[17]  M. Schellhorn,et al.  High-power diode-pumped Tm:YLF slab laser , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[18]  W. Hofmann,et al.  Optical Absorption Glucose Measurements Using 2.3-$\mu$m Vertical-Cavity Semiconductor Lasers , 2008, IEEE Photonics Technology Letters.

[19]  H. Emerich,et al.  Study of the temperature dependence of the structure of KY3F10 , 2006 .

[20]  L. Cerutti,et al.  Intracavity laser absorption spectroscopy with a vertical external cavity surface emitting laser at 2.3 μm: Application to water and carbon dioxide , 2005 .

[21]  M. Jansen,et al.  Refinement of the crystal structure of potassium triyttrium decafluoride, KY3F10 , 2002 .

[22]  R. Moncorgé,et al.  Spectroscopy and cw operation of a 1.85 μm Tm:KY3F10 laser , 2001 .

[23]  Sylvain Girard,et al.  Energy-transfer processes in Yb:Tm-doped KY 3 F 10 , LiYF 4 , and BaY 2 F 8 single crystals for laser operation at 1.5 and 2.3 μm , 2000 .

[24]  S. Girard,et al.  Synthesis and spectroscopic studies of Tm3+-doped KY3F10 single crystals , 2000 .

[25]  Clifford R. Pollock,et al.  Mode-locked Cr(2+):ZnSe laser. , 2000, Optics letters.

[26]  S. Girard,et al.  Excited-state absorption spectroscopy of Er 3 + -doped Y 3 Al 5 O 12 , YVO 4 , and phosphate glass , 1999 .

[27]  G. Huber,et al.  Diode-pumped continuous-wave, quasi-continuous-wave, and Q-switched laser operation of Yb3+,Tm3+: YLiF4 at 1.5 and 2.3 μm , 1998 .

[28]  G. Huber,et al.  Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3 , 1998 .

[29]  Norman P. Barnes,et al.  Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4 , 1998 .

[30]  Steven B. Sutton,et al.  115-W Tm:YAG diode-pumped solid-state laser , 1997 .

[31]  L. Esterowitz,et al.  Tm(3+):YLF laser continuously tunable between 2.20 and 2.46 microm. , 1994, Optics letters.

[32]  Jacquier,et al.  Model of the photon-avalanche effect. , 1993, Physical review. B, Condensed matter.

[33]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[34]  P. Caro,et al.  Crystal field parameters for Eu3+ in KY3F10. III. Radiative and nonradiative transition probabilities , 1978 .

[35]  J. Nella,et al.  Characteristics of room-temperature 2.3-µm laser emission from tm3+in YAG and YAlO3 , 1975, IEEE Journal of Quantum Electronics.