Mapping the q-voter model: From a single chain to complex networks

We propose and compare six different ways of mapping the modified q-voter model to complex networks. Considering square lattices, Barabasi–Albert, Watts–Strogatz and real Twitter networks, we ask the question if always a particular choice of the group of influence of a fixed size q leads to different behavior at the macroscopic level. Using Monte Carlo simulations we show that the answer depends on the relative average path length of the network and for real-life topologies the differences between the considered mappings may be negligible.

[1]  S. Redner,et al.  Voter models on heterogeneous networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  N. L. Johnson,et al.  Urn models and their application : an approach to modern discrete probability theory , 1978 .

[3]  S. Redner,et al.  A Kinetic View of Statistical Physics , 2010 .

[4]  Solomon E. Asch,et al.  Opinions and Social Pressure , 1955 .

[5]  S. Galam Sociophysics: A Physicist's Modeling of Psycho-political Phenomena , 2012 .

[6]  Paul J. Laurienti,et al.  The Ubiquity of Small-World Networks , 2011, Brain Connect..

[7]  André M Timpanaro,et al.  Exit probability of the one-dimensional q-voter model: analytical results and simulations for large networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  R. Pastor-Satorras,et al.  Heterogenous mean-field analysis of a generalized voter-like model on networks , 2011, 1106.4215.

[9]  K. Sznajd-Weron,et al.  Anticonformity or Independence?—Insights from Statistical Physics , 2013 .

[10]  Katarzyna Sznajd-Weron,et al.  A nonlinear q-voter model with deadlocks on the Watts–Strogatz graph , 2014, ArXiv.

[11]  Romualdo Pastor-Satorras,et al.  Irrelevance of information outflow in opinion dynamics models , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  André C. R. Martins,et al.  Pitfalls driven by the sole use of local updates in dynamical systems , 2011 .

[13]  Katarzyna Sznajd-Weron,et al.  Inflow versus outflow zero-temperature dynamics in one dimension. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Bikas K. Chakrabarti,et al.  Sociophysics: An Introduction , 2014 .

[15]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[16]  M. Macy,et al.  FROM FACTORS TO ACTORS: Computational Sociology and Agent-Based Modeling , 2002 .

[17]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[18]  P. Sen,et al.  Exit probability in inflow dynamics: nonuniversality induced by range, asymmetry, and fluctuation. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  K. Sznajd-Weron,et al.  Some new results on one-dimensional outflow dynamics , 2007, 0712.2035.

[20]  Dietrich Stauffer,et al.  Sociophysics: the Sznajd model and its applications , 2002 .

[21]  Stanford,et al.  Learning to Discover Social Circles in Ego Networks , 2012 .

[22]  Jari Saramäki,et al.  Path lengths, correlations, and centrality in temporal networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Parongama Sen,et al.  Complex Networks: effect of subtle changes in nature of randomness , 2010, ArXiv.

[24]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[25]  S. Thurner,et al.  Spreading of diseases through comorbidity networks across life and gender , 2014, 1405.3801.

[26]  Katarzyna Sznajd-Weron,et al.  Phase transition in the Sznajd model with independence , 2011, ArXiv.

[27]  Agata Fronczak,et al.  Average path length in random networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Romualdo Pastor-Satorras,et al.  Mean-Field Analysis of the q-Voter Model on Networks , 2013, 1301.7563.

[29]  Katarzyna Sznajd-Weron,et al.  Exit probability in a one-dimensional nonlinear q-voter model. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Paul R. Nail,et al.  Proposal of a four-dimensional model of social response. , 2000, Psychological bulletin.

[31]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[32]  Albert-László Barabási,et al.  Scale-Free Networks: A Decade and Beyond , 2009, Science.

[33]  Laxmidhar Behera,et al.  On Spatial Consensus Formation: Is The Sznajd Model Different From A Voter Model? , 2003 .

[34]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[35]  Katarzyna Sznajd-Weron,et al.  Phase transitions in the q-voter model with two types of stochastic driving. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[37]  M. A. Muñoz,et al.  Nonlinear q-voter model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Serge Galam,et al.  Local dynamics vs. social mechanisms: A unifying frame , 2005 .

[39]  P. Clifford,et al.  A model for spatial conflict , 1973 .

[40]  Dietrich Stauffer,et al.  GENERALIZATION TO SQUARE LATTICE OF SZNAJD SOCIOPHYSICS MODEL , 2000 .

[41]  Jure Leskovec,et al.  Learning to Discover Social Circles in Ego Networks , 2012, NIPS.

[42]  André M Timpanaro,et al.  Analytical expression for the exit probability of the q-voter model in one dimension. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  M. Ostilli Cayley Trees and Bethe Lattices: A concise analysis for mathematicians and physicists , 2011, 1109.6725.