Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging
暂无分享,去创建一个
Misha Elena Kilmer | Randy C. Hoover | Ning Hao | Karen S. Braman | M. Kilmer | Ning Hao | R. Hoover
[1] Michael K. Ng,et al. Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..
[2] Demetri Terzopoulos,et al. Multilinear image analysis for facial recognition , 2002, Object recognition supported by user interaction for service robots.
[3] David E. Booth,et al. Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.
[4] Karen S. Braman. Third-Order Tensors as Linear Operators on a Space of Matrices , 2010 .
[5] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[6] Pieter M. Kroonenberg,et al. Three-mode principal component analysis : theory and applications , 1983 .
[7] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[8] Berkant Savas,et al. Krylov Subspace Methods for Tensor Computations , 2009 .
[9] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[10] M. Kilmer,et al. Factorization strategies for third-order tensors , 2011 .
[11] Demetri Terzopoulos,et al. Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.
[12] L. Qi. Eigenvalues and invariants of tensors , 2007 .
[13] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[14] Demetri Terzopoulos,et al. Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[15] V. Kshirsagar,et al. Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.
[16] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[17] Nikos D. Sidiropoulos,et al. Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..
[18] Carl-Fredrik Westin,et al. Identification of translational displacements between N-dimensional data sets using the high-order SVD and phase correlation , 2005, IEEE Transactions on Image Processing.
[19] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[20] Mansoor Rezghi,et al. Diagonalization of Tensors with Circulant Structure , 2011 .
[21] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[22] Misha Elena Kilmer,et al. Kronecker product approximation for preconditioning in three-dimensional imaging applications , 2006, IEEE Transactions on Image Processing.
[23] Berkant Savas,et al. Krylov-Type Methods for Tensor Computations , 2010, 1005.0683.
[24] L. Lathauwer,et al. From Matrix to Tensor : Multilinear Algebra and Signal Processing , 1996 .
[25] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[26] M. Kilmer,et al. A Third-order Generalization of the Matrix Svd as a Product of Third-order Tensors , 2008 .