Urban Applications of Persistent Scatterer Interferometry

This chapter reviews the urban applications of Persistent Scatterer Interferometry (PSI), the most advanced type of differential interferometric Synthetic Aperture Radar techniques (DInSAR) based on data acquired by spaceborne SAR sensors. The standard DInSAR techniques exploit the information contained in the radar phase of at least two complex SAR images acquired at different times over the same area generating interferograms or interferometric pairs. For a general review of SAR interferometry, see Rosen et al. (2000) and Crosetto et al. (2005). A large part of the DInSAR results obtained in the 1990s has been achieved by using the standard DInSAR configuration, which in some cases is the only one that can be implemented due to the limited SAR data availability.

[1]  Gianfranco Fornaro,et al.  The use of IFSAR and classical geodetic techniques for caldera unrest episodes: application to the Campi Flegrei uplift event of 2000 , 2004 .

[2]  Urs Wegmüller,et al.  Assessing short‐ and long‐time displacements in the Venice coastland by synthetic aperture radar interferometric point target analysis , 2007 .

[3]  C. Werner,et al.  Interferometric point target analysis for deformation mapping , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[4]  R. Hanssen,et al.  Monitoring water defense structures using radar interferometry , 2008, 2008 IEEE Radar Conference.

[5]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[6]  A. Ferretti,et al.  InSAR permanent scatterer analysis reveals ups and downs in San Francisco Bay Area , 2004 .

[7]  Fabio Rocca,et al.  SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique , 2003, IEEE Trans. Geosci. Remote. Sens..

[8]  Michele Manunta,et al.  Two‐scale surface deformation analysis using the SBAS‐DInSAR technique: a case study of the city of Rome, Italy , 2008 .

[9]  Michael Eineder,et al.  High Resolution Interferometric Stacking with TerraSAR-X , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[10]  Fabio Rocca,et al.  Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis , 2004, Science.

[11]  F. Rocca,et al.  Space geodesy: Subsidence and flooding in New Orleans , 2006, Nature.

[12]  Jordi J. Mallorqui,et al.  Validation and comparison of Advanced Differential Interferometry Techniques: Murcia metropolitan area case study , 2009 .

[13]  Ramon F. Hanssen,et al.  Ambiguity resolution for permanent scatterer interferometry , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[14]  P. Berardino,et al.  An integrated SAR/GIS approach for investigating urban deformation phenomena: a case study of the city of Napoli, Italy , 2004 .

[15]  H. Zebker,et al.  A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers , 2004 .

[16]  Jordi J. Mallorquí,et al.  Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[17]  R. Hanssen,et al.  ASAR ERS interferometric phase continuity , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[18]  Maria Stella Giammarinaro,et al.  Ground motion phenomena in Caltanissetta (Italy) investigated by InSAR and geological data integration , 2008 .

[19]  A. Ferretti,et al.  Permanent scatterer InSAR reveals seasonal and long‐term aquifer‐system response to groundwater pumping and artificial recharge , 2008 .

[20]  Daniele Perissin,et al.  High-Accuracy Urban DEM Using Permanent Scatterers , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[22]  Jordi J. Mallorqui,et al.  Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain) , 2007 .

[23]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[24]  R. Hanssen,et al.  PERSISTENT SCATTERER INTERFEROMETRY USING ADAPTIVE DEFORMATION MODELS , 2007 .

[25]  Fabio Rocca,et al.  Monitoring landslides and tectonic motions with the Permanent Scatterers Technique , 2003 .

[26]  Fabio Rocca,et al.  A Combination of Space and Terrestrial Geodetic Techniques to Monitor Land Subsidence: Case Study, the Southeastern Po Plain, Italy , 2007 .

[27]  M. Crosetto,et al.  Generation of Advanced ERS and Envisat Interferometric SAR Products Using the Stable Point Network Technique , 2008 .

[28]  Fabrizio Novali,et al.  Creep on the Rodgers Creek fault, northern San Francisco Bay area from a 10 year PS‐InSAR dataset , 2007 .

[29]  Jordi J. Mallorqui,et al.  Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR Interferometry: Vega Media of the Segura River (SE Spain) case study , 2005 .

[30]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[31]  Antonio Pepe,et al.  A space-time minimum cost flow phase unwrapping algorithm for the generation of persistent scatterers deformation time-series , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[32]  Andrea Rinaldo,et al.  Sea level rise, hydrologic runoff, and the flooding of Venice , 2008 .

[33]  George E. Hilley,et al.  Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis , 2006 .

[34]  Antonio Pepe,et al.  On the generation of ERS/ENVISAT DInSAR time-series via the SBAS technique , 2005, IEEE Geoscience and Remote Sensing Letters.