Jordan Canonical Form: Theory and Practice
暂无分享,去创建一个
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] H. Weyl. The Classical Groups , 1939 .
[3] C. B. Allendoerfer,et al. The Gauss-Bonnet theorem for Riemannian polyhedra , 1943 .
[4] S. Chern. A simple instrinsic proof of the Gauss Bonnet formula for closed Riemannian manifolds , 1944 .
[5] Shiing-Shen Chern,et al. Characteristic Classes of Hermitian Manifolds , 1946 .
[6] A. G. Walker. Canonical form for a Riemannian space with a parallel field of null planes , 1950 .
[7] Z. Afifi. Riemann extensions of affine connected spaces , 1954 .
[8] B. Kostant,et al. Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold , 1955 .
[9] I. M. Singer,et al. Infinitesimally homogeneous spaces , 1960 .
[10] K. Nomizu,et al. On Local and Global Existence of Killing Vector Fields , 1960 .
[11] A. Avez,et al. Formule de Gauss-Bonnet-Chern en métrique de signature quelconque , 1963 .
[12] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .
[13] S. Sternberg. Lectures on Differential Geometry , 1964 .
[14] Yoshihiro Tashiro,et al. COMPLETE RIEMANNIAN MANIFOLDS AND SOME VECTOR FIELDS , 1965 .
[15] Friedrich Hirzebruch. Topological methods in algebraic geometry , 1966 .
[16] Marcel Berger,et al. Quelques formules de variation pour une structure riemannienne , 1970 .
[17] Michel Cahen,et al. Lorentzian symmetric spaces , 1970 .
[18] V. K. Patodi. Curvature and the eigenforms of the Laplace operator , 1971 .
[19] D. Lovelock. The Einstein Tensor and Its Generalizations , 1971 .
[20] Kouei Sekigawa. On some 3-dimensional Riemannian manifolds , 1973 .
[21] Peter B. Gilkey,et al. Curvature and the eigenvalues of the Laplacian for elliptic complexes , 1973 .
[22] V. K. Patodi,et al. On the heat equation and the index theorem , 1973 .
[23] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[24] Gerald W. Schwarz,et al. Inequalities defining orbit spaces , 1985 .
[25] Z. Szabó,et al. Structure theorems on riemannian spaces satisfying R(X, Y) · R=0, , 1985 .
[26] Qi-Ming Wang,et al. Isoparametric functions on Riemannian manifolds. I , 1987 .
[27] Osmo Pekonen. The Einstein field equation in a multidimensional universe , 1988 .
[28] Aziz Ikemakhen,et al. On the holonomy of Lorentzian manifolds , 1993 .
[29] Gerard Thompson,et al. Nonuniqueness of the metric in Lorentzian manifolds. , 1993 .
[30] Andrea Spiro. A remark on locally homogeneous Riemannian spaces , 1993 .
[31] Ralf Ponge,et al. Twisted products in pseudo-Riemannian geometry , 1993 .
[32] Thomas A. Ivey,et al. New examples of complete Ricci solitons , 1994 .
[33] Oldřich Kowalski,et al. On Riemannian 3-manifolds with distinct constant Ricci eigenvalues , 1994 .
[34] L. J. Alty,et al. The generalized Gauss–Bonnet–Chern theorem , 1995 .
[35] Lieven Vanhecke,et al. Riemannian Manifolds of Conullity Two , 1996 .
[36] Oldřich Kowalski,et al. On Ricci eigenvalues of locally homogeneous Riemannian 3-manifolds , 1996 .
[37] Alfons H. Salden,et al. Invariance Theory , 1997, Gaussian Scale-Space Theory.
[38] Eduardo García-Río,et al. Some Splitting Theorems for Stably Causal Spacetimes , 1998 .
[39] Barbara Opozda. On Locally Homogeneous G-structures , 1998 .
[40] Lorenzo Nicolodi,et al. Infinitesimal characterization of almost Hermitian homogeneous spaces , 1999 .
[41] Jorge Lauret,et al. Ricci soliton homogeneous nilmanifolds , 2001 .
[42] E. García‐Río,et al. A curvature condition for a twisted product¶to be a warped product , 2001 .
[43] J. L. Flores,et al. On General Plane Fronted Waves. Geodesics , 2002 .
[44] Oldřich Kowalski,et al. On Locally Nonhomogeneous Pseudo–Riemannian Manifolds with Locally Homogeneous Levi–Civita Connections , 2003 .
[45] V. Pravda,et al. Vanishing scalar invariant spacetimes in higher dimensions , 2004 .
[46] Mohammed-Larbi Labbi,et al. Variational properties of the Gauss–Bonnet curvatures , 2004, math/0406548.
[47] Barbara Opozda,et al. A classification of locally homogeneous connections on 2-dimensional manifolds , 2004 .
[48] P. Gilkey,et al. Curvature homogeneous spacelike Jordan Osserman pseudo-Riemannian manifolds , 2004 .
[49] Wolfgang Kühnel,et al. Conformal Geometry of Gravitational Plane Waves , 2004 .
[50] Ramón Vázquez-Lorenzo,et al. Four-dimensional Osserman metrics with nondiagonalizable Jacobi operators , 2005 .
[51] Thomas Leistner. Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds , 2005 .
[52] P. Gilkey,et al. Complete k-Curvature Homogeneous Pseudo-Riemannian Manifolds , 2005 .
[53] Ramón Vázquez-Lorenzo,et al. COMPLETE LOCALLY CONFORMALLY FLAT MANIFOLDS OF NEGATIVE CURVATURE , 2006 .
[54] Maciej Dunajski,et al. Anti-Self-Dual Conformal Structures in Neutral Signature , 2006, math/0610280.
[55] Michael Steller,et al. Conformal vector fields on spacetimes , 2006 .
[56] Bing-Long Chen,et al. Strong Uniqueness of the Ricci Flow , 2007, 0706.3081.
[57] D. Alekseevsky,et al. Cones over pseudo-Riemannian manifolds and their holonomy , 2007, 0707.3063.
[58] Andrzej Derdzinski,et al. Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds , 2007 .
[59] Peter B. Gilkey,et al. The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds , 2007 .
[60] Peng Lu,et al. The Ricci Flow: Techniques and Applications , 2007 .
[61] L. D. Cerbo,et al. Generic Properties of Homogeneous Ricci Solitons , 2007, 0711.0465.
[62] William Wylie,et al. On Gradient Ricci Solitons with Symmetry , 2007, 0710.3595.
[63] Giovanni Calvaruso,et al. Homogeneous structures on three-dimensional Lorentzian manifolds , 2007 .
[64] Xiaodong Cao,et al. On Locally Conformally Flat Gradient Shrinking Ricci Solitons , 2008, 0807.0588.
[65] A. Derdzínski,et al. Ricci solitons , 2017, 1712.06055.
[66] Oldřich Kowalski,et al. Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds , 2008 .
[67] Ramón Vázquez-Lorenzo,et al. Osserman and Conformally Osserman Manifolds with Warped and Twisted Product Structure , 2008, 0807.3045.
[68] Brett L. Kotschwar. On rotationally invariant shrinking Ricci solitons , 2008 .
[69] Nicos Pelavas,et al. Lorentzian spacetimes with constant curvature invariants in four dimensions , 2007, 0904.4877.
[70] Mckenzie Y. Wang,et al. On Ricci solitons of cohomogeneity one , 2008, 0802.0759.
[71] Zhu-Hong Zhang,et al. GRADIENT SHRINKING SOLITONS WITH VANISHING WEYL TENSOR , 2008, 0807.1582.
[72] Giovanni Calvaruso,et al. Central European Journal of Mathematics On the Ricci operator of locally homogeneous Lorentzian 3-manifolds , 2008 .
[73] P. Gilkey,et al. Geometric Realizations of Curvature , 2009, 0904.1192.
[74] P. Gilkey,et al. The geometry of modified Riemannian extensions , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[75] Kensuke Onda,et al. Lorentz Ricci Solitons on 3-dimensional Lie groups , 2009, 0906.0086.
[76] Andrzej Derdzinski,et al. Non-Walker Self-Dual Neutral Einstein Four-Manifolds of Petrov Type III , 2008, 0809.0855.
[77] E. García‐Río,et al. Three-dimensional Lorentzian homogeneous Ricci solitons , 2009, 0911.1247.
[78] Peter Gilkey,et al. The Geometry of Walker Manifolds , 2009, Synthesis Lectures on Mathematics & Statistics.
[79] Huai-Dong Cao,et al. Geometry of Complete Gradient Shrinking Ricci Solitons , 2009, 0903.3927.
[80] William Wylie,et al. On the classification of gradient Ricci solitons , 2007, 0712.1298.
[81] Y. Euh,et al. A Curvature Identity on a 4-Dimensional Riemannian Manifold , 2010, 1008.2439.
[82] Marco Rigoli,et al. Ricci almost solitons , 2010, 1003.2945.
[83] E. García‐Río,et al. Locally Conformally Flat Lorentzian Gradient Ricci Solitons , 2011, 1106.2924.
[84] E. García‐Río,et al. Ricci solitons on Lorentzian manifolds with large isometry groups , 2010, 1007.3397.
[85] Cynthia Will,et al. The space of solvsolitons in low dimensions , 2011 .
[86] P. Gilkey,et al. Universal curvature identities , 2011, 1104.1883.
[87] Yuanqi Wang,et al. On Four-Dimensional Anti-self-dual Gradient Ricci Solitons , 2011, 1102.0358.
[88] A. MacDougall,et al. 4D neutral signature VSI and CSI spaces , 2011, 1104.3799.
[89] Mohammed-Larbi Labbi. Fe b 20 07 Variational Properties of the Gauss-Bonnet Curvatures , .