Jordan Canonical Form: Theory and Practice

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. Weyl The Classical Groups , 1939 .

[3]  C. B. Allendoerfer,et al.  The Gauss-Bonnet theorem for Riemannian polyhedra , 1943 .

[4]  S. Chern A simple instrinsic proof of the Gauss Bonnet formula for closed Riemannian manifolds , 1944 .

[5]  Shiing-Shen Chern,et al.  Characteristic Classes of Hermitian Manifolds , 1946 .

[6]  A. G. Walker Canonical form for a Riemannian space with a parallel field of null planes , 1950 .

[7]  Z. Afifi Riemann extensions of affine connected spaces , 1954 .

[8]  B. Kostant,et al.  Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold , 1955 .

[9]  I. M. Singer,et al.  Infinitesimally homogeneous spaces , 1960 .

[10]  K. Nomizu,et al.  On Local and Global Existence of Killing Vector Fields , 1960 .

[11]  A. Avez,et al.  Formule de Gauss-Bonnet-Chern en métrique de signature quelconque , 1963 .

[12]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[13]  S. Sternberg Lectures on Differential Geometry , 1964 .

[14]  Yoshihiro Tashiro,et al.  COMPLETE RIEMANNIAN MANIFOLDS AND SOME VECTOR FIELDS , 1965 .

[15]  Friedrich Hirzebruch Topological methods in algebraic geometry , 1966 .

[16]  Marcel Berger,et al.  Quelques formules de variation pour une structure riemannienne , 1970 .

[17]  Michel Cahen,et al.  Lorentzian symmetric spaces , 1970 .

[18]  V. K. Patodi Curvature and the eigenforms of the Laplace operator , 1971 .

[19]  D. Lovelock The Einstein Tensor and Its Generalizations , 1971 .

[20]  Kouei Sekigawa On some 3-dimensional Riemannian manifolds , 1973 .

[21]  Peter B. Gilkey,et al.  Curvature and the eigenvalues of the Laplacian for elliptic complexes , 1973 .

[22]  V. K. Patodi,et al.  On the heat equation and the index theorem , 1973 .

[23]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[24]  Gerald W. Schwarz,et al.  Inequalities defining orbit spaces , 1985 .

[25]  Z. Szabó,et al.  Structure theorems on riemannian spaces satisfying R(X, Y) · R=0, , 1985 .

[26]  Qi-Ming Wang,et al.  Isoparametric functions on Riemannian manifolds. I , 1987 .

[27]  Osmo Pekonen The Einstein field equation in a multidimensional universe , 1988 .

[28]  Aziz Ikemakhen,et al.  On the holonomy of Lorentzian manifolds , 1993 .

[29]  Gerard Thompson,et al.  Nonuniqueness of the metric in Lorentzian manifolds. , 1993 .

[30]  Andrea Spiro A remark on locally homogeneous Riemannian spaces , 1993 .

[31]  Ralf Ponge,et al.  Twisted products in pseudo-Riemannian geometry , 1993 .

[32]  Thomas A. Ivey,et al.  New examples of complete Ricci solitons , 1994 .

[33]  Oldřich Kowalski,et al.  On Riemannian 3-manifolds with distinct constant Ricci eigenvalues , 1994 .

[34]  L. J. Alty,et al.  The generalized Gauss–Bonnet–Chern theorem , 1995 .

[35]  Lieven Vanhecke,et al.  Riemannian Manifolds of Conullity Two , 1996 .

[36]  Oldřich Kowalski,et al.  On Ricci eigenvalues of locally homogeneous Riemannian 3-manifolds , 1996 .

[37]  Alfons H. Salden,et al.  Invariance Theory , 1997, Gaussian Scale-Space Theory.

[38]  Eduardo García-Río,et al.  Some Splitting Theorems for Stably Causal Spacetimes , 1998 .

[39]  Barbara Opozda On Locally Homogeneous G-structures , 1998 .

[40]  Lorenzo Nicolodi,et al.  Infinitesimal characterization of almost Hermitian homogeneous spaces , 1999 .

[41]  Jorge Lauret,et al.  Ricci soliton homogeneous nilmanifolds , 2001 .

[42]  E. García‐Río,et al.  A curvature condition for a twisted product¶to be a warped product , 2001 .

[43]  J. L. Flores,et al.  On General Plane Fronted Waves. Geodesics , 2002 .

[44]  Oldřich Kowalski,et al.  On Locally Nonhomogeneous Pseudo–Riemannian Manifolds with Locally Homogeneous Levi–Civita Connections , 2003 .

[45]  V. Pravda,et al.  Vanishing scalar invariant spacetimes in higher dimensions , 2004 .

[46]  Mohammed-Larbi Labbi,et al.  Variational properties of the Gauss–Bonnet curvatures , 2004, math/0406548.

[47]  Barbara Opozda,et al.  A classification of locally homogeneous connections on 2-dimensional manifolds , 2004 .

[48]  P. Gilkey,et al.  Curvature homogeneous spacelike Jordan Osserman pseudo-Riemannian manifolds , 2004 .

[49]  Wolfgang Kühnel,et al.  Conformal Geometry of Gravitational Plane Waves , 2004 .

[50]  Ramón Vázquez-Lorenzo,et al.  Four-dimensional Osserman metrics with nondiagonalizable Jacobi operators , 2005 .

[51]  Thomas Leistner Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds , 2005 .

[52]  P. Gilkey,et al.  Complete k-Curvature Homogeneous Pseudo-Riemannian Manifolds , 2005 .

[53]  Ramón Vázquez-Lorenzo,et al.  COMPLETE LOCALLY CONFORMALLY FLAT MANIFOLDS OF NEGATIVE CURVATURE , 2006 .

[54]  Maciej Dunajski,et al.  Anti-Self-Dual Conformal Structures in Neutral Signature , 2006, math/0610280.

[55]  Michael Steller,et al.  Conformal vector fields on spacetimes , 2006 .

[56]  Bing-Long Chen,et al.  Strong Uniqueness of the Ricci Flow , 2007, 0706.3081.

[57]  D. Alekseevsky,et al.  Cones over pseudo-Riemannian manifolds and their holonomy , 2007, 0707.3063.

[58]  Andrzej Derdzinski,et al.  Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds , 2007 .

[59]  Peter B. Gilkey,et al.  The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds , 2007 .

[60]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[61]  L. D. Cerbo,et al.  Generic Properties of Homogeneous Ricci Solitons , 2007, 0711.0465.

[62]  William Wylie,et al.  On Gradient Ricci Solitons with Symmetry , 2007, 0710.3595.

[63]  Giovanni Calvaruso,et al.  Homogeneous structures on three-dimensional Lorentzian manifolds , 2007 .

[64]  Xiaodong Cao,et al.  On Locally Conformally Flat Gradient Shrinking Ricci Solitons , 2008, 0807.0588.

[65]  A. Derdzínski,et al.  Ricci solitons , 2017, 1712.06055.

[66]  Oldřich Kowalski,et al.  Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds , 2008 .

[67]  Ramón Vázquez-Lorenzo,et al.  Osserman and Conformally Osserman Manifolds with Warped and Twisted Product Structure , 2008, 0807.3045.

[68]  Brett L. Kotschwar On rotationally invariant shrinking Ricci solitons , 2008 .

[69]  Nicos Pelavas,et al.  Lorentzian spacetimes with constant curvature invariants in four dimensions , 2007, 0904.4877.

[70]  Mckenzie Y. Wang,et al.  On Ricci solitons of cohomogeneity one , 2008, 0802.0759.

[71]  Zhu-Hong Zhang,et al.  GRADIENT SHRINKING SOLITONS WITH VANISHING WEYL TENSOR , 2008, 0807.1582.

[72]  Giovanni Calvaruso,et al.  Central European Journal of Mathematics On the Ricci operator of locally homogeneous Lorentzian 3-manifolds , 2008 .

[73]  P. Gilkey,et al.  Geometric Realizations of Curvature , 2009, 0904.1192.

[74]  P. Gilkey,et al.  The geometry of modified Riemannian extensions , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[75]  Kensuke Onda,et al.  Lorentz Ricci Solitons on 3-dimensional Lie groups , 2009, 0906.0086.

[76]  Andrzej Derdzinski,et al.  Non-Walker Self-Dual Neutral Einstein Four-Manifolds of Petrov Type III , 2008, 0809.0855.

[77]  E. García‐Río,et al.  Three-dimensional Lorentzian homogeneous Ricci solitons , 2009, 0911.1247.

[78]  Peter Gilkey,et al.  The Geometry of Walker Manifolds , 2009, Synthesis Lectures on Mathematics & Statistics.

[79]  Huai-Dong Cao,et al.  Geometry of Complete Gradient Shrinking Ricci Solitons , 2009, 0903.3927.

[80]  William Wylie,et al.  On the classification of gradient Ricci solitons , 2007, 0712.1298.

[81]  Y. Euh,et al.  A Curvature Identity on a 4-Dimensional Riemannian Manifold , 2010, 1008.2439.

[82]  Marco Rigoli,et al.  Ricci almost solitons , 2010, 1003.2945.

[83]  E. García‐Río,et al.  Locally Conformally Flat Lorentzian Gradient Ricci Solitons , 2011, 1106.2924.

[84]  E. García‐Río,et al.  Ricci solitons on Lorentzian manifolds with large isometry groups , 2010, 1007.3397.

[85]  Cynthia Will,et al.  The space of solvsolitons in low dimensions , 2011 .

[86]  P. Gilkey,et al.  Universal curvature identities , 2011, 1104.1883.

[87]  Yuanqi Wang,et al.  On Four-Dimensional Anti-self-dual Gradient Ricci Solitons , 2011, 1102.0358.

[88]  A. MacDougall,et al.  4D neutral signature VSI and CSI spaces , 2011, 1104.3799.

[89]  Mohammed-Larbi Labbi Fe b 20 07 Variational Properties of the Gauss-Bonnet Curvatures , .