A Potential Checkmate to Lead: Bismuth in Organometal Halide Perovskites, Structure, Properties, and Applications

Abstract The remarkable optoelectronic properties and considerable performance of the organo lead‐halide perovskites (PVKs) in various optoelectronic applications grasp tremendous scientific attention. However, the existence of the toxic lead in these compounds is threatening human health and remains a major concern in the way of their commercialization. To address this issue, numerous nontoxic alternatives have been reported. Among these alternatives, bismuth‐based PVKs have emerged as a promising substitute because of similar optoelectronic properties and extended environmental stability. This work communicates briefly about the possible lead‐alternatives and explores bismuth‐based perovskites comprehensively, in terms of their structures, optoelectronic properties, and applications. A brief description of lead‐toxification is provided and the possible Pb‐alternatives from the periodic table are scrutinized. Then, the classification and crystal structures of various Bi‐based perovskites are elaborated on. Detailed optoelectronic properties of Bi‐based perovskites are also described and their optoelectronic applications are abridged. The overall photovoltaic applications along with device characteristics (i.e., V OC, J SC, fill factor, FF, and power conversion efficiency, PCE), fabrication method, device architecture, and operational stability are also summarized. Finally, a conclusion is drawn where a brief outlook highlights the challenges that hamper the future progress of Bi‐based optoelectronic devices and suggestions for future directions are provided.

[1]  S. Chakraborty,et al.  Poor Photovoltaic Performance of Cs3Bi2I9: An Insight through First-Principles Calculations , 2017 .

[2]  O. Gunawan,et al.  A road towards 25% efficiency and beyond: perovskite tandem solar cells , 2016 .

[3]  D. J. Clark,et al.  Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors , 2016 .

[4]  F. Giustino,et al.  Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment. , 2016, The journal of physical chemistry letters.

[5]  S. Ogale,et al.  Lead-Free Perovskite Semiconductors Based on Germanium–Tin Solid Solutions: Structural and Optoelectronic Properties , 2018 .

[6]  Guangda Niu,et al.  All‐Inorganic Bismuth‐Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability , 2018 .

[7]  Luis Camacho,et al.  Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells , 2017, Nature Energy.

[8]  Yanfa Yan,et al.  Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites. , 2016, ChemSusChem.

[9]  G. Papavassiliou,et al.  Notizen: Preparation, Structures and Optical Properties of [H3N(CH2)6NH3]BiX5 (X=I, Cl) and [H3N(CH2)6NH3]SbX5 (X=I, Br) , 1998 .

[10]  T. Edvinsson,et al.  Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent , 2019, Communications Chemistry.

[11]  Yoshikazu Suzuki,et al.  Gas-assisted coating of Bi-based (CH3NH3)3Bi2I9 active layer in perovskite solar cells , 2017 .

[12]  A. Benyoussef,et al.  Lead-free perovskite based bismuth for solar cells absorbers , 2019, Journal of Alloys and Compounds.

[13]  Xingyuan Liu,et al.  Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr3 Films. , 2017, The journal of physical chemistry letters.

[14]  Guannan Xiao,et al.  High concentration PbI2·DMSO complex precursor solution of 1.7 M in DMF for high-thickness and full-coverage CH3NH3PbI3−xBrxthin films , 2017, Journal of Materials Science: Materials in Electronics.

[15]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[16]  S. Chakraborty,et al.  Zero-Dimensional Lead-Free Hybrid Perovskite-like Material with a Quantum-Well Structure , 2019, Chemistry of Materials.

[17]  D. Mitzi,et al.  Crystal Structure of AgBi2I7 Thin Films. , 2016, The journal of physical chemistry letters.

[18]  Yu Lin,et al.  Halide Perovskites under Pressure: Accessing New Properties through Lattice Compression , 2017 .

[19]  X. Hou,et al.  High-Quality Cs2 AgBiBr6 Double Perovskite Film for Lead-Free Inverted Planar Heterojunction Solar Cells with 2.2 % Efficiency. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  Istiak Hussain,et al.  Functional materials, device architecture, and flexibility of perovskite solar cell , 2018, Emergent Materials.

[21]  P. Luo,et al.  Chemical Vapor Deposition of Perovskites for Photovoltaic Application , 2017 .

[22]  M. Yanagida,et al.  Tailoring the film morphology and interface band offset of caesium bismuth iodide-based Pb-free perovskite solar cells , 2019, Journal of Materials Chemistry C.

[23]  F. Giustino,et al.  Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. , 2016, The journal of physical chemistry letters.

[24]  T. Ma,et al.  Design of a novel and highly stable lead-free Cs2NaBiI6 double perovskite for photovoltaic application , 2018 .

[25]  Xiaogang Yang,et al.  An in-situ room temperature route to CuBiI4 based bulk-heterojunction perovskite-like solar cells , 2018, Science China Materials.

[26]  Bin Yang,et al.  Lead-Free, Air-Stable All-Inorganic Cesium Bismuth Halide Perovskite Nanocrystals. , 2017, Angewandte Chemie.

[27]  Yantao Shi,et al.  A comparative study of one-step and two-step approaches for MAPbI 3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell , 2018 .

[28]  Chengmin Ji,et al.  (C6H13N)2BiI5: A One-Dimensional Lead-Free Perovskite-Derivative Photoconductive Light Absorber. , 2018, Inorganic chemistry.

[29]  Suneth C. Watthage,et al.  Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites , 2015 .

[30]  M. A. Bykov,et al.  Iodobismuthates Containing One-Dimensional BiI4(-) Anions as Prospective Light-Harvesting Materials: Synthesis, Crystal and Electronic Structure, and Optical Properties. , 2016, Inorganic chemistry.

[31]  T. Hayat,et al.  Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications , 2018, Science China Materials.

[32]  C. Morrison,et al.  Extending lead-free hybrid photovoltaic materials to new structures: thiazolium, aminothiazolium and imidazolium iodobismuthates. , 2018, Dalton transactions.

[33]  S. Mobin,et al.  A (CH 3 NH 3 ) 3 Bi 2 I 9 Perovskite Based on a Two‐Step Deposition Method: Lead‐Free, Highly Stable, and with Enhanced Photovoltaic Performance , 2019, ChemElectroChem.

[34]  D. Gamelin,et al.  Structural Diversity in Cesium Bismuth Halide Nanocrystals , 2019, Chemistry of Materials.

[35]  P. Fournier,et al.  Epitaxial thin films of the multiferroic double perovskite Bi2FeCrO6 grown on (100)-oriented SrTiO3 substrates: Growth, characterization, and optimization , 2009, 0903.2402.

[36]  Nripan Mathews,et al.  Lead-free germanium iodide perovskite materials for photovoltaic applications , 2015 .

[37]  Zhishan Bo,et al.  The preparation of Ag3BiBr6 films and their preliminary use for solution processed photovoltaics , 2019, SN Applied Sciences.

[38]  Lisa H. Mason,et al.  Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity , 2014, BioMed research international.

[39]  M. Kanatzidis,et al.  Strong Electron–Phonon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) , 2017 .

[40]  A. Amassian,et al.  Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9 , 2016 .

[41]  L. Patrick Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. , 2006, Alternative medicine review : a journal of clinical therapeutic.

[42]  S. Mhaisalkar,et al.  Limitations of Cs3Bi2I9 as Lead-Free Photovoltaic Absorber Materials. , 2018, ACS applied materials & interfaces.

[43]  J. Qiu,et al.  Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells , 2019, Journal of Materials Chemistry A.

[44]  B. Sutherland Thermally Decomposing Perovskites One Layer at a Time , 2017 .

[45]  T. Nguyen-Tran,et al.  Synthesis of organo tin halide perovskites via simple aqueous acidic solution-based method , 2018, Journal of Science: Advanced Materials and Devices.

[46]  M. Thompson,et al.  Vibronic Structure in Room Temperature Photoluminescence of the Halide Perovskite Cs3Bi2Br9. , 2017, Inorganic chemistry.

[47]  Rachel C. Kurchin,et al.  Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications. , 2015, The journal of physical chemistry letters.

[48]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[49]  Stephanie O. Adeyemo,et al.  Tin(iv) dopant removal through anti-solvent engineering enabling tin based perovskite solar cells with high charge carrier mobilities , 2019, Journal of Materials Chemistry C.

[50]  M. Ikegami,et al.  Photovoltaic enhancement of bismuth halide hybrid perovskite by N-methyl pyrrolidone-assisted morphology conversion , 2017 .

[51]  T. Ma,et al.  Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route , 2016 .

[52]  X. Xia,et al.  High-Quality (CH3NH3)3Bi2I9 Film-Based Solar Cells: Pushing Efficiency up to 1.64. , 2017, The journal of physical chemistry letters.

[53]  E. Johansson,et al.  Extended Photo-Conversion Spectrum in Low-Toxic Bismuth Halide Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[54]  D. Mitzi,et al.  Structure and optical properties of several organic-inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra. , 2001, Inorganic chemistry.

[55]  Yanlin Song,et al.  Fabrication of methylammonium bismuth iodide through interdiffusion of solution-processed BiI3/CH3NH3I stacking layers , 2017 .

[56]  Zhang Lan,et al.  Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells , 2013, Scientific Reports.

[57]  Mingkui Wang,et al.  The Role of Synthesis Parameters on Crystallization and Grain Size in Hybrid Halide Perovskite Solar Cells , 2017 .

[58]  O. Stroyuk Lead-free hybrid perovskites for photovoltaics , 2018, Beilstein journal of nanotechnology.

[59]  W. Windl,et al.  Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors , 2016 .

[60]  Yanlin Song,et al.  Cupric bromide hybrid perovskite heterojunction solar cells , 2015 .

[61]  E. Parthé,et al.  Cs3Sb2I9 and Cs3Bi2I9 with the hexagonal Cs3Cr2Cl9 structure type , 1978 .

[62]  Yani Chen,et al.  Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. , 2017, Chemical Society reviews.

[63]  Tonio Buonassisi,et al.  Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites , 2015, 1504.02144.

[64]  R. Yuan,et al.  Tri­ammonium nona­iodo­diantimonate(III), (NH4)3[Sb2I9] , 2005 .

[65]  A. Zaoui,et al.  First-Principles Modeling of Bismuth Doping in the MAPbI3 Perovskite , 2018 .

[66]  Rohit Abraham John,et al.  Superior Performance of Silver Bismuth Iodide Photovoltaics Fabricated via Dynamic Hot‐Casting Method under Ambient Conditions , 2018, Advanced Energy Materials.

[67]  Y. Voroshilov,et al.  Crystal growth and X-ray structure determination of Rb3Bi2I9 , 2000 .

[68]  Bo Zou,et al.  Pressure-Induced Emission Enhancement, Band-Gap Narrowing, and Metallization of Halide Perovskite Cs3 Bi2 I9. , 2018, Angewandte Chemie.

[69]  M. Chabinyc,et al.  Crystal and Electronic Structures of Complex Bismuth Iodides A3Bi2I9 (A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics , 2015 .

[70]  Yue Hu,et al.  Organic-Inorganic Copper(II)-Based Material: A Low-Toxic, Highly Stable Light Absorber for Photovoltaic Application. , 2017, The journal of physical chemistry letters.

[71]  G. Svechnikov,et al.  Effect of temperature variation on shift and broadening of the exciton band in Cs3Bi2I9 layered crystals , 2004 .

[72]  K. Meerholz,et al.  Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications , 2016 .

[73]  M. Cournoyer Lead substitution and elimination study , 2001, Journal of Radioanalytical and Nuclear Chemistry.

[74]  T. Qiu,et al.  Ultrathin Cs3Bi2I9 Nanosheets as an Electronic Memory Material for Flexible Memristors , 2017 .

[75]  A. Vescan,et al.  Fabrication of Methylammonium Bismuth Iodide Layers Employing Methylamine Vapor Exposure , 2019, physica status solidi (a).

[76]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[77]  T. Ma,et al.  Development of a Mixed Halide-chalcogenide Bismuth-based Perovskite MABiI2S with Small Bandgap and Wide Absorption Range , 2019, Chemistry Letters.

[78]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[79]  M. Ikegami,et al.  Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3 Bi2I9 for Photovoltaic Applications. , 2016, ACS applied materials & interfaces.

[80]  C. Chen,et al.  Active-layer evolution and efficiency improvement of (CH3NH33Bi2I9-based solar cell on TiO2-deposited ITO substrate , 2016, Nano Reseach.

[81]  L. Sobczyk,et al.  Phase transitions in (CH3NH3)3Bi2I9 (MAIB) , 1990 .

[82]  S. Ardo,et al.  Hybrid organic–inorganic solar cells based on bismuth iodide and 1,6-hexanediammonium dication , 2016 .

[83]  Dong Suk Kim,et al.  High Performance of Planar Perovskite Solar Cells Produced from PbI2(DMSO) and PbI2(NMP) Complexes by Intramolecular Exchange , 2016 .

[84]  Antonio Abate,et al.  Perovskite Solar Cells Go Lead Free , 2017 .

[85]  T. Bein,et al.  Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications , 2017 .

[86]  Synthesis, crystal structure, and properties of a perovskite-related bismuth phase, (NH4)3Bi2I9 , 2015, 1509.08126.

[87]  S. Priya,et al.  Fabrication of Lead-Free (CH3 NH3 )3 Bi2 I9 Perovskite Photovoltaics in Ethanol Solvent. , 2017, ChemSusChem.

[88]  Liping Yu,et al.  Cu-In Halide Perovskite Solar Absorbers. , 2016, Journal of the American Chemical Society.

[89]  Mi Kyung Kim,et al.  Effective control of crystal grain size in CH3NH3PbI3 perovskite solar cells with a pseudohalide Pb(SCN)2 additive , 2016 .

[90]  T. J. Whittles,et al.  AgBiI4 as a Lead-Free Solar Absorber with Potential Application in Photovoltaics , 2017 .

[91]  Fenghua Zhang,et al.  Synthesis and Properties of a Lead-Free Hybrid Double Perovskite: (CH3NH3)2AgBiBr6 , 2017 .

[92]  C. Eckhardt,et al.  General Theoretical Concepts for Solid State Reactions: Quantitative Formulation of the Reaction Cavity, Steric Compression, and Reaction-Induced Stress Using an Elastic Multipole Representation of Chemical Pressure , 1995 .

[93]  X. Hou,et al.  Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V. , 2017, The journal of physical chemistry letters.

[94]  Peng Wang,et al.  Inch‐Size Single Crystal of a Lead‐Free Organic–Inorganic Hybrid Perovskite for High‐Performance Photodetector , 2018 .

[95]  S. Muqthiar Ali,et al.  An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites , 2019, Renewable and Sustainable Energy Reviews.

[96]  T. Ma,et al.  Investigation on structures, band gaps, and electronic structures of lead free La2NiMnO6 double perovskite materials for potential application of solar cell , 2016 .

[97]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[98]  H. Güdel,et al.  Light-emission and excited-state dynamics in Tm2+ doped CsCaCl3, CsCaBr3, and CsCaI3. , 2006, The journal of physical chemistry. B.

[99]  G. Konstantatos,et al.  Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals , 2016, Nature Photonics.

[100]  Jacob L. Jones,et al.  Dual-source evaporation of silver bismuth iodide films for planar junction solar cells , 2019, Journal of Materials Chemistry A.

[101]  P. Biswas,et al.  Band Gap Insensitivity to Large Chemical Pressures in Ternary Bismuth Iodides for Photovoltaic Applications , 2016 .

[102]  D. Scanlon,et al.  Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. , 2016, Chemical communications.

[103]  Shijing Sun,et al.  The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium) , 2016, 1603.00537.

[104]  Jang‐Sik Lee,et al.  Lead-free, air-stable hybrid organic-inorganic perovskite resistive switching memory with ultrafast switching and multilevel data storage. , 2018, Nanoscale.

[105]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[106]  J. Ziller,et al.  Influence of One Specific Carbon–Carbon Bond on the Quality, Stability, and Photovoltaic Performance of Hybrid Organic–Inorganic Bismuth Iodide Materials , 2019, ACS Applied Energy Materials.

[107]  Zhenlin Wang,et al.  Direct Conversion of Perovskite Thin Films into Nanowires with Kinetic Control for Flexible Optoelectronic Devices. , 2016, Nano letters.

[108]  Manas R. Parida,et al.  Direct-Indirect Nature of the Bandgap in Lead-Free Perovskite Nanocrystals. , 2017, The journal of physical chemistry letters.

[109]  Yan‐Zhen Zheng,et al.  Structure Tunable Organic–Inorganic Bismuth Halides for an Enhanced Two-Dimensional Lead-Free Light-Harvesting Material , 2017 .

[110]  Hye-Min Lee,et al.  Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells , 2018 .

[111]  T. Doert,et al.  Structural Variety of Defect Perovskite Variants M3E2X9 (M = Rb, Tl, E = Bi, Sb, X = Br, I) , 2016 .

[112]  Wei Huang,et al.  Long Electron–Hole Diffusion Length in High‐Quality Lead‐Free Double Perovskite Films , 2018, Advanced materials.

[113]  A. Pan,et al.  Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications , 2019, Nano Research.

[114]  A. Tiwari,et al.  Toxicity of lead: A review with recent updates , 2012, Interdisciplinary toxicology.

[115]  A. Du,et al.  Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites , 2016, Nano Research.

[116]  Yoon Ho Lee,et al.  Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive , 2018 .

[117]  H. Jagodzinski Der Symmetrieeinfluss auf den allgemeinen Lösungsansatz eindimensionaler Fehlordnungs-probleme , 1954 .

[118]  C. Wickleder,et al.  Photoluminescence of CsMI3:Eu2+ (M = Mg, Ca, and Sr) – a spectroscopic probe on structural distortions , 2015 .

[119]  Cherie R. Kagan,et al.  Prospects of nanoscience with nanocrystals. , 2015, ACS nano.

[120]  L. Quan,et al.  Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics. , 2016, Angewandte Chemie.

[121]  V. Lisin,et al.  Phase Transitions of Cs3Sb2I9 , Cs3Bi2I9  , and Cs3Bi2Br9 Crystals , 2001 .

[122]  Chunfeng Lan,et al.  Lead-free formamidinium bismuth perovskites (FA)3Bi2I9 with low bandgap for potential photovoltaic application , 2019, Solar Energy.

[123]  Hang Hu,et al.  Nontoxic (CH3NH3)3Bi2I9 perovskite solar cells free of hole conductors with an alternative architectural design and a solution-processable approach , 2017 .

[124]  F. Lavoie-Cardinal,et al.  Photoluminescence of CsMBr3:Eu2+ (M=Mg, Ca, Sr)—A novel strategy for the development of low-energy emitting phosphors , 2014 .

[125]  Dong Hoe Kim,et al.  Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS , 2019, Joule.

[126]  Clark,et al.  Pressure-induced structural phase transitions in the AMnF4 series (A=Cs, Rb, K) studied by synchrotron x-ray powder diffraction: Correlation between hydrostatic and chemical pressure. , 1996, Physical review. B, Condensed matter.

[127]  Th. Pauporté,et al.  Oxide hole blocking selective contacts in perovskite solar cells , 2018, OPTO.

[128]  L. Luo,et al.  High-Performance Red-Light Photodetector Based on Lead-Free Bismuth Halide Perovskite Film. , 2017, ACS applied materials & interfaces.

[129]  C. Fu,et al.  Effect of Cl doping amount on the microstructure, photovoltaic properties and ferroelectric properties of Bi-based lead-free perovskite , 2019, Journal of Advanced Dielectrics.

[130]  Xiaolei Li,et al.  An extremely high power factor in Seebeck effects based on a new n-type copper-based organic/inorganic hybrid C6H4NH2CuBr2I film with metal-like conductivity , 2017 .

[131]  Hongzheng Chen,et al.  Lead-free (CH3NH3)3Bi2I9 perovskite solar cells with fluorinated PDI films as organic electron transport layer , 2018, Journal of Alloys and Compounds.

[132]  Aslihan Babayigit,et al.  Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio , 2016, Scientific Reports.

[133]  L. Etgar,et al.  Organo-metal perovskite based solar cells: sensitized versus planar architecture , 2014 .

[134]  T. Edvinsson,et al.  Bismuth Iodide Perovskite Materials for Solar Cell Applications: Electronic Structure, Optical Transitions, and Directional Charge Transport , 2016 .

[135]  K. Balasubramaniam,et al.  Effect of Br-doping and choice of precursor solvent on morphology of lead free (CH3NH3)3Bi2I9 perovskites , 2018, Journal of Renewable and Sustainable Energy.

[136]  M. Ikegami,et al.  Lead-free perovskite solar cells using Sb and Bi-based A3B2X9 and A3BX6 crystals with normal and inverse cell structures , 2017, Nano Convergence.

[137]  Shahid Ali,et al.  Enhanced stability in cesium assisted hybrid 2D/3D-perovskite thin films and solar cells prepared in ambient humidity , 2019, Solar Energy.

[138]  H. -. Kim,et al.  Anti‐Solvent Assisted Crystallization Processed Methylammonium Bismuth Iodide Cuboids towards Highly Stable Lead‐Free Perovskite Solar Cells , 2017 .

[139]  Lixin Xiao,et al.  The Dawn of Lead‐Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film , 2017, Advanced science.

[140]  Chang Su Kim,et al.  Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell , 2018, Nano Research.

[141]  Xitao Liu,et al.  Triiodide-Induced Band-Edge Reconstruction of a Lead-Free Perovskite-Derivative Hybrid for Strong Light Absorption , 2018 .

[142]  S. Chakraborty,et al.  Synthesis and Optical Properties of Colloidal M3Bi2I9 (M = Cs, Rb) Perovskite Nanocrystals , 2018 .

[143]  A. Lindenberg,et al.  A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. , 2016, Journal of the American Chemical Society.

[144]  H. Fu Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: From materials to solar cells , 2019, Solar Energy Materials and Solar Cells.

[145]  Robert A. Meyers,et al.  Encyclopedia of analytical chemistry : applications, theory and instrumentation , 2000 .

[146]  A. Thind,et al.  KBaTeBiO6: A Lead-Free, Inorganic Double-Perovskite Semiconductor for Photovoltaic Applications , 2019, Chemistry of Materials.

[147]  Yoon Myung,et al.  Atmospheric pressure chemical vapor deposition of methylammonium bismuth iodide thin films , 2017 .

[148]  Gerrit Boschloo,et al.  Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application , 2015, Advanced materials.

[149]  Y. Ishibashi,et al.  Optical Absorption in Band-Edge Region of ( CH3NH3)3Bi2I9 Single Crystals , 1996 .

[150]  R. Knox Introduction to Exciton Physics , 1983 .

[151]  A. Vescan,et al.  Morphology Control of Organic–Inorganic Bismuth‐Based Perovskites for Solar Cell Application , 2018, physica status solidi (a).

[152]  M. Kanatzidis,et al.  Prospects for low-toxicity lead-free perovskite solar cells , 2019, Nature Communications.

[153]  Yang Zhou,et al.  Ultrabroad near-infrared photoluminescence from bismuth doped CsPbI3: polaronic defects vs. bismuth active centers , 2016 .

[154]  T. Dimopoulos,et al.  A Zero-Dimensional Mixed-Anion Hybrid Halogenobismuthate(III) Semiconductor: Structural, Optical, and Photovoltaic Properties. , 2018, Inorganic chemistry.

[155]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[156]  N. Dai,et al.  Air-stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties , 2017 .

[157]  Q. Tang,et al.  Enhancement of the Photovoltaic Performance of Dye‐Sensitized Solar Cells by Doping Y0.78Yb0.20Er0.02F3 in the Photoanode , 2012 .

[158]  Junliang Yang,et al.  (C6H5CH2NH3)2CuBr4: A Lead-Free, Highly Stable Two-Dimensional Perovskite for Solar Cell Applications , 2018 .

[159]  Xing’ao Li,et al.  Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications , 2019, Nano-micro letters.

[160]  O. Lindqvist,et al.  The Crystal Structure of Cesium Bismuth Iodide, Cs3Bi2I9. , 1968 .

[161]  David J. Singh,et al.  Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials , 2018, npj Computational Materials.

[162]  Hongje Jang,et al.  Neuron-Material Nanointerfaces: Surface Nanotopography Governs Neuronal Differentiation and Development , 2017 .

[163]  H. Tomiyasu,et al.  Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites. , 2017, ChemSusChem.

[164]  A. Du,et al.  Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications , 2019, Scientific Reports.

[165]  F. Giustino,et al.  Computational Screening of Homovalent Lead Substitution in Organic–Inorganic Halide Perovskites , 2016 .

[166]  T. L. Mercier,et al.  Exploring AgBixI3x + 1 semiconductor thin films for lead-free perovskite solar cells , 2018 .

[167]  P. Gao,et al.  Lead‐Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too? , 2017, Advanced science.

[168]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[169]  R. B. Rakhi,et al.  Zero-Dimensional Methylammonium Bismuth Iodide-Based Lead-Free Perovskite Capacitor , 2017, ACS omega.

[170]  Liang Ma,et al.  Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. , 2018, Nanoscale.

[171]  A. Pal,et al.  Band-edges of bismuth-based ternary halide perovskites (A3Bi2I9) through scanning tunneling spectroscopy vis-à-vis impact of defects in limiting the performance of solar cells , 2019, Solar Energy Materials and Solar Cells.

[172]  Jinhyun Kim,et al.  An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability , 2018, Nano Energy.

[173]  Wei Huang,et al.  Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion. , 2017, Angewandte Chemie.

[174]  Seong Sik Shin,et al.  Solvent-Engineering Method to Deposit Compact Bismuth-Based Thin Films: Mechanism and Application to Photovoltaics , 2018 .

[175]  Taeghwan Hyeon,et al.  The surface science of nanocrystals. , 2016, Nature materials.

[176]  Prasanta S. Bandyopadhyay,et al.  An overview of double perovskites A2B′B″O6 with small ions at A site: Synthesis, structure and magnetic properties , 2018 .

[177]  N. Park,et al.  Research Direction toward Theoretical Efficiency in Perovskite Solar Cells , 2018, ACS Photonics.

[178]  T. Rath,et al.  Progress on lead-free metal halide perovskites for photovoltaic applications: a review , 2017, Monatshefte für Chemie - Chemical Monthly.

[179]  Su-Huai Wei,et al.  Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation. , 2017, Journal of the American Chemical Society.

[180]  L. Etgar,et al.  Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties. , 2016, Nano letters.

[181]  Shijing Sun,et al.  Fundamental Carrier Lifetime Exceeding 1 µs in Cs2AgBiBr6 Double Perovskite , 2018 .

[182]  Alexey Y. Koposov,et al.  Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. , 2010, ACS nano.

[183]  F. Gao,et al.  Defects engineering for high-performance perovskite solar cells , 2018, npj Flexible Electronics.

[184]  M. Bernechea,et al.  Research Update: Bismuth based materials for photovoltaics , 2018, APL Materials.

[185]  Ruipeng Li,et al.  Bismuth‐Based Perovskite‐Inspired Solar Cells: In Situ Diagnostics Reveal Similarities and Differences in the Film Formation of Bismuth‐ and Lead‐Based Films , 2019, Solar RRL.

[186]  C. Wickleder,et al.  Photoluminescence properties of Yb(2+) ions doped in the perovskites CsCaX3 and CsSrX3 (X = Cl, Br, and I) - a comparative study. , 2016, Physical chemistry chemical physics : PCCP.

[187]  E. Johansson,et al.  High Photon‐to‐Current Conversion in Solar Cells Based on Light‐Absorbing Silver Bismuth Iodide , 2017, ChemSusChem.

[188]  J. Im,et al.  Efficient Solar Cells Employing Light‐Harvesting Sb0.67Bi0.33SI , 2019, Advanced materials.

[189]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[190]  F. Rosei,et al.  Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases , 2018 .

[191]  C. Morrison,et al.  Lead-free Pseudo-three-dimensional Organic-inorganic Iodobismuthates for Photovoltaic Applications , 2017 .

[192]  Shufang Zhang,et al.  Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells , 2018, Solar Energy Materials and Solar Cells.

[193]  R. Hidayat,et al.  Ab-Initio Calculation of Electronic Structure of Lead Halide Perovskites with Formamidinium Cation as an Active Material for Perovskite Solar Cells , 2017 .

[194]  Hong‐Bin Yao,et al.  General Synthesis of Lead-Free Metal Halide Perovskite Colloidal Nanocrystals in 1-Dodecanol. , 2019, Inorganic chemistry.

[195]  Weijian Chen,et al.  External stokes shift of perovskite nanocrystals enlarged by photon recycling , 2019, Applied Physics Letters.

[196]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[197]  Vinod Kumar,et al.  Electric field assisted spray coated lead free bismuth iodide perovskite thin film for solar cell application , 2019, Solar Energy.

[198]  J. MacManus‐Driscoll,et al.  Research Update: Bismuth-based perovskite-inspired photovoltaic materials , 2018, APL Materials.

[199]  Rachel C. Kurchin,et al.  Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber. , 2016, Chemistry.