ULTRASOUND CONTRAST AGENTS

[1]  Hairong Zheng,et al.  Dynamic microPET imaging of ultrasound contrast agents and lipid delivery. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[2]  Andrej Lyshchik,et al.  Relationship Between Retention of a Vascular Endothelial Growth Factor Receptor 2 (VEGFR2)‐Targeted Ultrasonographic Contrast Agent and the Level of VEGFR2 Expression in an In Vivo Breast Cancer Model , 2008, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[3]  J. Qi,et al.  Dynamic imaging of arginine-rich heart-targeted vehicles in a mouse model. , 2008, Biomaterials.

[4]  Paul A Dayton,et al.  A stimulus-responsive contrast agent for ultrasound molecular imaging. , 2008, Biomaterials.

[5]  S A Small,et al.  Spatio-temporal analysis of molecular delivery through the blood–brain barrier using focused ultrasound , 2007, Physics in medicine and biology.

[6]  J. Lindner,et al.  Detection of recent myocardial ischaemia by molecular imaging of P-selectin with targeted contrast echocardiography. , 2007, European heart journal.

[7]  R. Gillies,et al.  DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[8]  J. Kirkwood,et al.  Integrins and cancer. , 2007, Oncology.

[9]  Paul A Dayton,et al.  Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. , 2007, The Journal of the Acoustical Society of America.

[10]  Zhong-gao Gao,et al.  Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. , 2007, Journal of the National Cancer Institute.

[11]  J. Lindner,et al.  Molecular Imaging of Inflammation in Atherosclerosis With Targeted Ultrasound Detection of Vascular Cell Adhesion Molecule-1 , 2007, Circulation.

[12]  Eleanor Stride,et al.  Microbubbling by co-axial electrohydrodynamic atomization , 2007, Medical & Biological Engineering & Computing.

[13]  Katherine W. Ferrara,et al.  The natural frequency of nonlinear oscillation of ultrasound contrast agents in microvessels. , 2007, Ultrasound in medicine & biology.

[14]  K W Ferrara,et al.  Selective imaging of adherent targeted ultrasound contrast agents , 2007, Physics in medicine and biology.

[15]  Katherine W Ferrara,et al.  Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model. , 2007, Radiology.

[16]  Emilio Quaia,et al.  Microbubble ultrasound contrast agents: an update , 2007, European Radiology.

[17]  Fuminori Moriyasu,et al.  Phagocytosis of ultrasound contrast agent microbubbles by Kupffer cells. , 2007, Ultrasound in medicine & biology.

[18]  J. Sutcliffe,et al.  Long-circulating liposomes radiolabeled with [18F]fluorodipalmitin ([18F]FDP). , 2007, Nuclear medicine and biology.

[19]  S. Radio,et al.  The role of complement in the adherence of microbubbles to dysfunctional arterial endothelium and atherosclerotic plaque. , 2007, Cardiovascular research.

[20]  Janos Szebeni,et al.  Methylation of the phosphate oxygen moiety of phospholipid‐methoxy(polyethylene glycol) conjugate prevents PEGylated liposome‐mediated complement activation and anaphylatoxin production , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  Paul A Dayton,et al.  Long-term stability by lipid coating monodisperse microbubbles formed by a flow-focusing device. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[22]  S. Acton,et al.  Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow. , 2006, Contrast media & molecular imaging.

[23]  Katherine W Ferrara,et al.  Acoustic response of compliable microvessels containing ultrasound contrast agents , 2006, Physics in medicine and biology.

[24]  J. Pikkemaat,et al.  Preparation of monodisperse polymer particles and capsules by ink-jet printing , 2006 .

[25]  Wolfgang Schmidt,et al.  Novel manufacturing process of hollow polymer microspheres , 2006 .

[26]  T. Ye,et al.  Microbubble expansion in a flexible tube. , 2006, Journal of biomechanical engineering.

[27]  Stefaan C De Smedt,et al.  Ultrasound-responsive polymer-coated microbubbles that bind and protect DNA. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[28]  U. Bagge,et al.  Microvascular Behavior and Effects of Sonazoid Microbubbles in the Cremaster Muscle of Rats After Local Administration , 2006, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[29]  Paul A Dayton,et al.  Ultrasound Radiation Force Modulates Ligand Availability on Targeted Contrast Agents , 2006, Molecular imaging.

[30]  Raffi Bekeredjian,et al.  Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Xueliang Pan,et al.  Nanoparticles as image enhancing agents for ultrasonography , 2006, Physics in medicine and biology.

[32]  K. Hynynen,et al.  On the impact of vessel size on the threshold of bubble collapse , 2006 .

[33]  Paul A Dayton,et al.  Lateral phase separation in lipid-coated microbubbles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[34]  Shangfu Li,et al.  Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device , 2006 .

[35]  Paul A Dayton,et al.  Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[36]  Mark A Borden,et al.  Collapse and shedding transitions in binary lipid monolayers coating microbubbles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[37]  Paul A. Dayton,et al.  Microbubble oscillation in tubes with diameters of 12, 25, and 195 microns , 2006 .

[38]  T. Andresen,et al.  Activation of the Human Complement System by Cholesterol-Rich and PEGylated Liposomes—Modulation of Cholesterol-Rich Liposome-Mediated Complement Activation by Elevated Serum LDL and HDL Levels , 2006, Journal of liposome research.

[39]  P. Dayton,et al.  Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  Kishan Dholakia,et al.  Membrane disruption by optically controlled microbubble cavitation , 2005 .

[41]  Piet Gros,et al.  Structures of complement component C3 provide insights into the function and evolution of immunity , 2005, Nature.

[42]  R. Shohet,et al.  Targeting vascular endothelium with avidin microbubbles. , 2005, Ultrasound in medicine & biology.

[43]  Gaio Paradossi,et al.  Stable polymeric microballoons as multifunctional device for biomedical uses: synthesis and characterization. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[44]  H. Möhwald,et al.  Gas-filled polyelectrolyte capsules. , 2005, Angewandte Chemie.

[45]  G. Torzilli Adverse effects associated with SonoVue® use , 2005, Expert opinion on drug safety.

[46]  Mark A Borden,et al.  Effect of microstructure on molecular oxygen permeation through condensed phospholipid monolayers. , 2005, Journal of the American Chemical Society.

[47]  Yuantai Hu,et al.  Asymmetric oscillation of cavitation bubbles in a microvessel and its implications upon mechanisms of clinical vessel injury in shock-wave lithotripsy , 2005 .

[48]  William R Wagner,et al.  Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. , 2005, Cancer research.

[49]  Ferenc A. Jolesz,et al.  Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications , 2005, NeuroImage.

[50]  K. Hynynen,et al.  Resonance frequency of microbubbles in small blood vessels: a numerical study , 2004, IEEE Ultrasonics Symposium, 2004.

[51]  K. Chou,et al.  P-selectin cell adhesion molecule in inflammation, thrombosis, cancer growth and metastasis. , 2004, Current medicinal chemistry.

[52]  D. Hammer,et al.  The effect of polymer chain length and surface density on the adhesiveness of functionalized polymersomes. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[53]  M. Longo,et al.  Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles. , 2004, Colloids and surfaces. B, Biointerfaces.

[54]  E. Ruoslahti,et al.  Vascular zip codes in angiogenesis and metastasis. , 2004, Biochemical Society transactions.

[55]  Mark A. Borden,et al.  Oxygen Permeability of Fully Condensed Lipid Monolayers , 2004 .

[56]  David Needham,et al.  Test of the Epstein-Plesset model for gas microparticle dissolution in aqueous media: effect of surface tension and gas undersaturation in solution. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[57]  D. McPherson,et al.  Intravascular ultrasound molecular imaging of atheroma components in vivo. , 2004, Journal of the American College of Cardiology.

[58]  G. Goldsztein Collapse and Rebound of a Gas Bubble , 2004 .

[59]  Paul A. Dayton,et al.  Optical observation of lipid- and polymer-shelled ultrasound microbubble contrast agents , 2004 .

[60]  J Szebeni,et al.  Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. , 2003, Progress in lipid research.

[61]  E. Ruoslahti The RGD story: a personal account. , 2003, Matrix biology : journal of the International Society for Matrix Biology.

[62]  David Needham,et al.  Mechanical Properties and Microstructure of Polycrystalline Phospholipid Monolayer Shells: Novel Solid Microparticles , 2003 .

[63]  William R Wagner,et al.  Ultrasound Imaging of Acute Cardiac Transplant Rejection With Microbubbles Targeted to Intercellular Adhesion Molecule-1 , 2003, Circulation.

[64]  Samuel A Wickline,et al.  Nanotechnology for molecular imaging and targeted therapy. , 2003, Circulation.

[65]  T. Skotland,et al.  Hepatic clearance of Sonazoid perfluorobutane microbubbles by Kupffer cells does not reduce the ability of liver to phagocytose or degrade albumin microspheres , 2003, Cell and Tissue Research.

[66]  Bernhard Wolfrum,et al.  Observations of pressure-wave-excited contrast agent bubbles in the vicinity of cells , 2002 .

[67]  M. Longo,et al.  Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: Effect of lipid hydrophobic chain length , 2002 .

[68]  Ji Song,et al.  Influence of microbubble shell properties on ultrasound signal: Implications for low-power perfusion imaging. , 2002, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[69]  S. Kaul,et al.  Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement. , 2002, Journal of the American College of Cardiology.

[70]  D. McPherson,et al.  Left Ventricular Thrombus Enhancement After Intravenous Injection of Echogenic Immunoliposomes: Studies in a New Experimental Model , 2002, Circulation.

[71]  R. Shohet,et al.  DNA-loaded albumin microbubbles enhance ultrasound-mediated transfection in vitro. , 2002, Ultrasound in medicine & biology.

[72]  Jiri Sklenar,et al.  Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. , 2002, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[73]  S. Kaul,et al.  Noninvasive Imaging of Myocardial Reperfusion Injury Using Leukocyte-Targeted Contrast Echocardiography , 2002, Circulation.

[74]  D. McPherson,et al.  Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents. , 2002, Ultrasound in medicine & biology.

[75]  F M Muggia,et al.  ROLE OF COMPLEMENT ACTIVATION IN HYPERSENSITIVITY REACTIONS TO DOXIL AND HYNIC PEG LIPOSOMES: EXPERIMENTAL AND CLINICAL STUDIES , 2002, Journal of liposome research.

[76]  A. Gañán-Calvo,et al.  Perfectly monodisperse microbubbling by capillary flow focusing. , 2001, Physical review letters.

[77]  D. McPherson,et al.  Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents. , 2001, Journal of pharmaceutical sciences.

[78]  K. Ley,et al.  Ultrasound Assessment of Inflammation and Renal Tissue Injury With Microbubbles Targeted to P-Selectin , 2001, Circulation.

[79]  Samuel A Wickline,et al.  Targeted ultrasonic contrast agents for molecular imaging and therapy. , 2001, Current problems in cardiology.

[80]  J. Israelachvili,et al.  Impact of polymer tether length on multiple ligand-receptor bond formation. , 2001, Science.

[81]  J. Brash,et al.  Protein adsorption to polyethylene glycol modified liposomes from fibrinogen solution and from plasma. , 2001, Biochimica et biophysica acta.

[82]  John D Lambris,et al.  Structure and biology of complement protein C3, a connecting link between innate and acquired immunity , 2001, Immunological reviews.

[83]  J. Crane,et al.  Rapid compression transforms interfacial monolayers of pulmonary surfactant. , 2001, Biophysical journal.

[84]  K W Ferrara,et al.  Optical and acoustical dynamics of microbubble contrast agents inside neutrophils. , 2001, Biophysical journal.

[85]  D. Lohse,et al.  Cavitation science: Is there a simple theory of sonoluminescence? , 2001, Nature.

[86]  Paul A. Dayton,et al.  Optical observation of contrast agent destruction , 2000 .

[87]  S. Kaul,et al.  Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. , 2000, Circulation.

[88]  Andrea Prosperetti,et al.  Growth and collapse of a vapor bubble in a narrow tube , 2000 .

[89]  L. Hoff,et al.  Oscillations of polymeric microbubbles: effect of the encapsulating shell , 2000, The Journal of the Acoustical Society of America.

[90]  N de Jong,et al.  Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. , 2000, Ultrasound in medicine & biology.

[91]  S. Kaul,et al.  Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement-mediated adherence to activated leukocytes. , 2000, Circulation.

[92]  David Needham,et al.  The Influence of Tiered Layers of Surface-Grafted Poly(ethylene glycol) on Receptor−Ligand-Mediated Adhesion between Phospholipid Monolayer-Stabilized Microbubbles and Coated Glass Beads , 2000 .

[93]  M. Wheatley,et al.  Preparation and characterization of hollow microcapsules for use as ultrasound contrast agents , 1999 .

[94]  Andrea Prosperetti,et al.  Growth and collapse of a vapor bubble in a small tube , 1999 .

[95]  K W Ferrara,et al.  Direct video-microscopic observation of the dynamic effects of medical ultrasound on ultrasound contrast microspheres. , 1998, Investigative radiology.

[96]  S Otto,et al.  Dissolution of multicomponent microbubbles in the bloodstream: 2. Experiment. , 1998, Ultrasound in medicine & biology.

[97]  A. Kabalnov,et al.  Dissolution of multicomponent microbubbles in the bloodstream: 1. Theory. , 1998, Ultrasound in medicine & biology.

[98]  Andrea Prosperetti,et al.  The natural frequency of oscillation of gas bubbles in tubes , 1998 .

[99]  R. Ross,et al.  Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. , 1998, Arteriosclerosis, thrombosis, and vascular biology.

[100]  K. Nightingale,et al.  A preliminary evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[101]  W Lauterborn,et al.  Cavitation bubble dynamics. , 1997, Ultrasonics sonochemistry.

[102]  Seth Putterman,et al.  Defining the unknowns of sonoluminescence , 1997 .

[103]  J. G. Miller,et al.  A novel site-targeted ultrasonic contrast agent with broad biomedical application. , 1996, Circulation.

[104]  O. A. Asbjornsen,et al.  Size fractionation of gas-filled microspheres by flotation , 1996 .

[105]  J. Kuszak,et al.  Development of inherently echogenic liposomes as an ultrasonic contrast agent. , 1996, Journal of pharmaceutical sciences.

[106]  Feng Yan,et al.  BR1: A New Ultrasonographic Contrast Agent Based on Sulfur Hexafluoride-Filled Microbubbles , 1995, Investigative radiology.

[107]  Barber,et al.  Sonoluminescing bubbles and mass diffusion. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[108]  Charles C. Church,et al.  The effects of an elastic solid surface layer on the radial pulsations of gas bubbles , 1995 .

[109]  T. Gjøen,et al.  Biodistributions of air-filled albumin microspheres in rats and pigs. , 1994, The Biochemical journal.

[110]  V. Kolb-Bachofen,et al.  Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. , 1993, Biochimica et biophysica acta.

[111]  N de Jong,et al.  Ultrasound scattering properties of Albunex microspheres. , 1993, Ultrasonics.

[112]  R. Cardiff,et al.  Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease , 1992, Molecular and cellular biology.

[113]  N de Jong,et al.  Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. , 1992, Ultrasonics.

[114]  A. Kabalnov,et al.  Solubility of fluorocarbons in water as a key parameter determining fluorocarbon emulsion stability , 1990 .

[115]  M. Wheatley,et al.  Contrast agents for diagnostic ultrasound: development and evaluation of polymer-coated microbubbles. , 1990, Biomaterials.

[116]  F J Ten Cate,et al.  Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. , 1990, Journal of the American College of Cardiology.

[117]  Kazuo Maruyama,et al.  Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes , 1990, FEBS letters.

[118]  S S Segal,et al.  The behavior of sonicated albumin microbubbles within the microcirculation: a basis for their use during myocardial contrast echocardiography. , 1989, Circulation research.

[119]  Andrea Prosperetti,et al.  The equation of bubble dynamics in a compressible liquid , 1987 .

[120]  K J Parker,et al.  A particulate contrast agent with potential for ultrasound imaging of liver. , 1987, Ultrasound in medicine & biology.

[121]  R. J. Hunter Foundations of Colloid Science , 1987 .

[122]  R. Bing,et al.  Microbubble dynamics visualized in the intact capillary circulation. , 1984, Journal of the American College of Cardiology.

[123]  R. D. Venter,et al.  THE STABILITY OF GAS BUBBLES IN LIQUID‐GAS SOLUTIONS * , 1983 .

[124]  D. Miller,et al.  Ultrasonic detection of resonant cavitation bubbles in a flow tube by their second-harmonic emissions , 1981 .

[125]  Michael J. Miksis,et al.  Bubble Oscillations of Large Amplitude , 1980 .

[126]  P. Peterson,et al.  Cryptic peptidoglycan and the antiphagocytic effect of the Staphylococcus aureus capsule: model for the antiphagocytic effect of bacterial cell surface polymers , 1979, Infection and immunity.

[127]  S. G. Mason,et al.  Axial Migration of Particles in Poiseuille Flow , 1961, Nature.

[128]  Joseph B. Keller,et al.  Damping of Underwater Explosion Bubble Oscillations , 1956 .

[129]  F. Gilmore,et al.  The growth or collapse of a spherical bubble in a viscous compressible liquid , 1952 .

[130]  L. Rayleigh VIII. On the pressure developed in a liquid during the collapse of a spherical cavity , 1917 .

[131]  Paul A. Dayton,et al.  Imaging of angiogenesis using Cadence contrast pulse sequencing and targeted contrast agents. , 2008, Contrast media & molecular imaging.

[132]  Olivier Couture,et al.  Investigating perfluorohexane particles with high-frequency ultrasound. , 2006, Ultrasound in medicine & biology.

[133]  A. Klibanov,et al.  Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging. , 2005, Bioconjugate chemistry.

[134]  Alexander L. Klibanov,et al.  Ultrasound Contrast Agents: Development of the Field and Current Status , 2002 .

[135]  Michel Claudon,et al.  Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts , 2001, European Radiology.

[136]  P. Dayton,et al.  Mechanisms of contrast agent destruction , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[137]  K. Bjerknes,et al.  Air-filled polymeric microcapsules from emulsions containing different organic phases. , 2001, Journal of microencapsulation.

[138]  W. Chan,et al.  Fmoc Solid Phase Peptide Synthesis: A Practical Approach (Practical Approach Series) , 2019 .

[139]  P. Dayton,et al.  Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[140]  P. Dayton,et al.  Optical and acoustical observations of the effects of ultrasound on contrast agents , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[141]  J. G. Miller,et al.  High-frequency ultrasonic detection of thrombi with a targeted contrast system. , 1997, Ultrasound in medicine & biology.

[142]  J. Correas,et al.  EchoGen emulsion: a new ultrasound contrast agent based on phase shift colloids. , 1996, Clinical radiology.

[143]  A. Prosperetti Bubble dynamics: a review and some recent results , 1982 .

[144]  A. Prosperetti,et al.  Bubble Dynamics and Cavitation , 1977 .