Properties of Classical and Quantum Jensen-Shannon Divergence

Jensen-Shannon divergence (JD) is a symmetrized and smoothed version of the most important divergence measure of information theory, Kullback divergence. As opposed to Kullback divergence it determines in a very direct way a metric; indeed, it is the square of a metric. We consider a family of divergence measures (JD_alpha for alpha>0), the Jensen divergences of order alpha, which generalize JD as JD_1=JD. Using a result of Schoenberg, we prove that JD_alpha is the square of a metric for alpha lies in the interval (0,2], and that the resulting metric space of probability distributions can be isometrically embedded in a real Hilbert space. Quantum Jensen-Shannon divergence (QJD) is a symmetrized and smoothed version of quantum relative entropy and can be extended to a family of quantum Jensen divergences of order alpha (QJD_alpha). We strengthen results by Lamberti et al. by proving that for qubits and pure states, QJD_alpha^1/2 is a metric space which can be isometrically embedded in a real Hilbert space when alpha lies in the interval (0,2]. In analogy with Burbea and Rao's generalization of JD, we also define general QJD by associating a Jensen-type quantity to any weighted family of states. Appropriate interpretations of quantities introduced are discussed and bounds are derived in terms of the total variation and trace distance.

[1]  R. Gallager Information Theory and Reliable Communication , 1968 .

[2]  Hartmut Klauck,et al.  Interaction in Quantum Communication , 2006, IEEE Transactions on Information Theory.

[3]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[4]  Flemming Topsøe,et al.  Basic Concepts, Identities and Inequalities - the Toolkit of Information Theory , 2001, Entropy.

[5]  A. Plastino,et al.  Metric character of the quantum Jensen-Shannon divergence , 2008, 0801.1586.

[6]  Jinhyoung Lee,et al.  Operationally invariant measure of the distance between quantum states by complementary measurements. , 2003, Physical review letters.

[7]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[8]  W. Wootters Statistical distance and Hilbert space , 1981 .

[9]  Dominik Endres,et al.  A new metric for probability distributions , 2003, IEEE Transactions on Information Theory.

[10]  Ran El-Yaniv,et al.  Agnostic Classification of Markovian Sequences , 1997, NIPS.

[11]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .

[12]  André F. T. Martins,et al.  Nonextensive Generalizations of the Jensen-Shannon Divergence , 2008, ArXiv.

[13]  J. Lin,et al.  A NEW DIRECTED DIVERGENCE MEASURE AND ITS CHARACTERIZATION , 1990 .

[14]  E. Prugovec̆ki Information-theoretical aspects of quantum measurement , 1977 .

[15]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[16]  C. R. Rao,et al.  On the convexity of some divergence measures based on entropy functions , 1982, IEEE Trans. Inf. Theory.

[17]  A. Rényi On Measures of Entropy and Information , 1961 .

[18]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[19]  Peter Harremoës,et al.  Maximum Entropy Fundamentals , 2001, Entropy.

[20]  B. Fuglede Spirals in Hilbert space: With an application in information theory , 2005 .

[21]  André F. T. Martins,et al.  Tsallis kernels on measures , 2008, 2008 IEEE Information Theory Workshop.

[22]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  P. W. Lamberti,et al.  Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states , 2005, quant-ph/0508138.

[24]  Flemming Topsøe,et al.  Jensen-Shannon divergence and Hilbert space embedding , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[25]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[26]  Andrew K. C. Wong,et al.  Entropy and Distance of Random Graphs with Application to Structural Pattern Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Michael D. Westmoreland,et al.  Indeterminate-length quantum coding , 2000, quant-ph/0011014.

[28]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[29]  Michael D. Westmoreland,et al.  Relative entropy in quantum information theory , 2000, quant-ph/0004045.

[30]  Flemming Topsøe,et al.  Some inequalities for information divergence and related measures of discrimination , 2000, IEEE Trans. Inf. Theory.

[31]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[32]  A. Nussbaum Radial exponentially convex functions , 1972 .

[33]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[34]  P. W. Lamberti,et al.  Wootters’ distance revisited: a new distinguishability criterium , 2005 .

[35]  P. W. Lamberti,et al.  NATURAL METRIC FOR QUANTUM INFORMATION THEORY , 2008, 0807.0583.

[36]  Eric P. Xing,et al.  Nonextensive entropic kernels , 2008, ICML '08.

[37]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[38]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[39]  M. Donald Further results on the relative entropy , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .

[41]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[42]  Jianhua Lin,et al.  Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.

[43]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[44]  Lev B. Levitin,et al.  Information Theory for Quantum Systems , 1987 .

[45]  Jan Havrda,et al.  Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.

[46]  Peter Harremoës,et al.  Refinements of Pinsker's inequality , 2003, IEEE Trans. Inf. Theory.