Properties of Classical and Quantum Jensen-Shannon Divergence
暂无分享,去创建一个
[1] R. Gallager. Information Theory and Reliable Communication , 1968 .
[2] Hartmut Klauck,et al. Interaction in Quantum Communication , 2006, IEEE Transactions on Information Theory.
[3] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[4] Flemming Topsøe,et al. Basic Concepts, Identities and Inequalities - the Toolkit of Information Theory , 2001, Entropy.
[5] A. Plastino,et al. Metric character of the quantum Jensen-Shannon divergence , 2008, 0801.1586.
[6] Jinhyoung Lee,et al. Operationally invariant measure of the distance between quantum states by complementary measurements. , 2003, Physical review letters.
[7] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[8] W. Wootters. Statistical distance and Hilbert space , 1981 .
[9] Dominik Endres,et al. A new metric for probability distributions , 2003, IEEE Transactions on Information Theory.
[10] Ran El-Yaniv,et al. Agnostic Classification of Markovian Sequences , 1997, NIPS.
[11] C. Berg,et al. Harmonic Analysis on Semigroups , 1984 .
[12] André F. T. Martins,et al. Nonextensive Generalizations of the Jensen-Shannon Divergence , 2008, ArXiv.
[13] J. Lin,et al. A NEW DIRECTED DIVERGENCE MEASURE AND ITS CHARACTERIZATION , 1990 .
[14] E. Prugovec̆ki. Information-theoretical aspects of quantum measurement , 1977 .
[15] I. J. Schoenberg,et al. Metric spaces and positive definite functions , 1938 .
[16] C. R. Rao,et al. On the convexity of some divergence measures based on entropy functions , 1982, IEEE Trans. Inf. Theory.
[17] A. Rényi. On Measures of Entropy and Information , 1961 .
[18] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[19] Peter Harremoës,et al. Maximum Entropy Fundamentals , 2001, Entropy.
[20] B. Fuglede. Spirals in Hilbert space: With an application in information theory , 2005 .
[21] André F. T. Martins,et al. Tsallis kernels on measures , 2008, 2008 IEEE Information Theory Workshop.
[22] Schumacher,et al. Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[23] P. W. Lamberti,et al. Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states , 2005, quant-ph/0508138.
[24] Flemming Topsøe,et al. Jensen-Shannon divergence and Hilbert space embedding , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[25] I. J. Schoenberg. Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .
[26] Andrew K. C. Wong,et al. Entropy and Distance of Random Graphs with Application to Structural Pattern Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[27] Michael D. Westmoreland,et al. Indeterminate-length quantum coding , 2000, quant-ph/0011014.
[28] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[29] Michael D. Westmoreland,et al. Relative entropy in quantum information theory , 2000, quant-ph/0004045.
[30] Flemming Topsøe,et al. Some inequalities for information divergence and related measures of discrimination , 2000, IEEE Trans. Inf. Theory.
[31] O A Rosso,et al. Distinguishing noise from chaos. , 2007, Physical review letters.
[32] A. Nussbaum. Radial exponentially convex functions , 1972 .
[33] Leonard M. Blumenthal,et al. Theory and applications of distance geometry , 1954 .
[34] P. W. Lamberti,et al. Wootters’ distance revisited: a new distinguishability criterium , 2005 .
[35] P. W. Lamberti,et al. NATURAL METRIC FOR QUANTUM INFORMATION THEORY , 2008, 0807.0583.
[36] Eric P. Xing,et al. Nonextensive entropic kernels , 2008, ICML '08.
[37] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[38] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[39] M. Donald. Further results on the relative entropy , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.
[40] D. Petz. Quantum Information Theory and Quantum Statistics , 2007 .
[41] Alexander S. Holevo,et al. The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.
[42] Jianhua Lin,et al. Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.
[43] Michael D. Westmoreland,et al. Sending classical information via noisy quantum channels , 1997 .
[44] Lev B. Levitin,et al. Information Theory for Quantum Systems , 1987 .
[45] Jan Havrda,et al. Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.
[46] Peter Harremoës,et al. Refinements of Pinsker's inequality , 2003, IEEE Trans. Inf. Theory.