FINITE STATE IMPEDANCE-BASED CONTROL OF A POWERED TRANSFEMORAL PROSTHESIS

[1]  R. Waters,et al.  Energy cost of walking of amputees: the influence of level of amputation. , 1976, The Journal of bone and joint surgery. American volume.

[2]  R W Mann,et al.  An electrohydraulic knee-torque controller for a prosthesis simulator. , 1977, Journal of biomechanical engineering.

[3]  Jeffrey Llevret Stein Design issues in the stance phase control of above-knee prostheses , 1983 .

[4]  T. McMahon,et al.  Ballistic walking. , 1980, Journal of biomechanics.

[5]  Jorunn L Helbostad,et al.  Estimation of gait cycle characteristics by trunk accelerometry. , 2004, Journal of biomechanics.

[6]  E. N. Zuniga,et al.  Gait patterns in above-knee amputees. , 1972, Archives of physical medicine and rehabilitation.

[7]  A Bar,et al.  Adaptive microcomputer control of an artificial knee in level walking. , 1983, Journal of biomedical engineering.

[8]  Woodie Claude Flowers A man-interactive simulator system for above-knee prosthetics studies. , 1973 .

[9]  M. Donath Proportional EMG control for above knee pros-theses. , 1974 .

[10]  Michael Goldfarb,et al.  Design and Control of a Powered Transfemoral Prosthesis , 2008, Int. J. Robotics Res..

[11]  Michael Goldfarb Control for a self-contained microcomputer-controlled above-knee prosthesis , 1992 .

[12]  Dejan B. Popovic,et al.  Control Aspects of Active Above-Knee Prosthesis , 1991, Int. J. Man Mach. Stud..

[13]  Steven A. Gard,et al.  Use of Quantitative Gait Analysis for the Evaluation of Prosthetic Walking Performance , 2006 .

[14]  Neville Hogan,et al.  Impedance Control: An Approach to Manipulation , 1984, 1984 American Control Conference.

[15]  Richard A. Brand,et al.  The biomechanics and motor control of human gait: Normal, elderly, and pathological , 1992 .

[16]  S. Fukashiro,et al.  Comparison of new approaches to estimate mechanical output of individual joints in vertical jumps. , 1998, Journal of biomechanics.

[17]  Blake Hannaford,et al.  Development of Powered Prosthetic Lower Limb , 1998 .

[18]  E.J. Barth,et al.  Sliding mode control of a direct-injection monopropellant-powered actuator , 2004, Proceedings of the 2004 American Control Conference.

[19]  Scott L Delp,et al.  The importance of swing-phase initial conditions in stiff-knee gait. , 2003, Journal of biomechanics.

[20]  Michael Goldfarb,et al.  Design and energetic characterization of a liquid-propellant-powered actuator for self-powered robots , 2003 .

[21]  B I Prilutsky,et al.  Comparison of mechanical energy expenditure of joint moments and muscle forces during human locomotion. , 1996, Journal of biomechanics.

[22]  R B Stein,et al.  Optimal control for an above-knee prosthesis with two degrees of freedom. , 1995, Journal of biomechanics.

[23]  P. Bonato,et al.  An EMG-position controlled system for an active ankle-foot prosthesis: an initial experimental study , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[24]  Blake Hannaford,et al.  Muscle-Like Pneumatic Actuators for Below-Knee Prostheses, , 2000 .

[25]  S. Nadeau,et al.  Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking? , 2003, Clinical biomechanics.

[26]  Donald Lee Grimes An active multi-mode above knee prosthesis controller , 1979 .

[27]  D. Winter,et al.  Biomechanics of below-knee amputee gait. , 1988, Journal of biomechanics.

[28]  Michael Goldfarb,et al.  Design and Energetic Characterization of a Solenoid Injected Liquid Monopropellant Powered Actuator for Self-Powered Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[29]  R. Riener,et al.  Joint powers in stair climbing at different slopes , 1999, Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. N.

[30]  Max Donath,et al.  Feasibility of an Active Control Scheme for Above Knee Prostheses , 1977 .

[31]  P. Devita,et al.  A functional knee brace alters joint torque and power patterns during walking and running. , 1996, Journal of biomechanics.

[32]  Hugh Herr,et al.  User-adaptive control of a magnetorheological prosthetic knee , 2003, Ind. Robot.

[33]  W C Flowers,et al.  Stance phase control of above-knee prostheses: knee control versus SACH foot design. , 1987, Journal of biomechanics.

[34]  Peggy Arnell,et al.  The Biomechanics and Motor Control of Human Gait , 1988 .