Displacement Estimation by Maximum-Likelihood Texture Tracking

This paper presents a novel method to estimate displacement by maximum-likelihood (ML) texture tracking. The observed polarimetric synthetic aperture radar (PolSAR) data-set is composed by two terms: the scalar texture parameter and the speckle component. Based on the Spherically Invariant Random Vectors (SIRV) theory, the ML estimator of the texture is computed. A generalization of the ML texture tracking based on the Fisher probability density function (pdf) modeling is introduced. For random variables with Fisher distributions, the ratio distribution is established. The proposed method is tested with both simulated PolSAR data and spaceborne PolSAR images provided by the TerraSAR-X (TSX) and the RADARSAT-2 (RS-2) sensors.

[1]  Francesco Serafino SAR image coregistration based on isolated point scatterers , 2006, IEEE Geoscience and Remote Sensing Letters.

[2]  Ahmed H. El-Bassiouny,et al.  A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions , 2009, Stat. Methods Appl..

[3]  Yves Delignon,et al.  Etude statistique d'images SAR de la surface de la mer , 1991 .

[4]  Jean Taboury,et al.  Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake , 1999 .

[5]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[6]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[7]  Gabriel Vasile,et al.  Monitoring temperate glaciers: combined use of multi-date TerraSAR-X images and continous GPS measurements , 2009 .

[8]  Gabriel Vasile,et al.  Coherency Matrix Estimation of Heterogeneous Clutter in High-Resolution Polarimetric SAR Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Jean-Marie Nicolas 1 - Introduction aux Statistiques de deuxième espèce : applications des Logs-moments et des Logs-cumulants à l'analyse des lois d'images radar , 2002 .

[10]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[11]  Kurt L. Feigl,et al.  Surface motion of mountain glaciers derived from satellite optical imagery , 2005 .

[12]  Søren Nørvang Madsen,et al.  Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements , 2003 .

[13]  R. Bamler,et al.  Interferometric stereo radargrammetry: absolute height determination from ERS-ENVISAT interferograms , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[14]  Jocelyn Chanussot,et al.  Combining Airborne Photographs and Spaceborne SAR Data to Monitor Temperate Glaciers: Potentials and Limits , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Philippe Forster,et al.  Covariance Structure Maximum-Likelihood Estimates in Compound Gaussian Noise: Existence and Algorithm Analysis , 2008, IEEE Transactions on Signal Processing.

[16]  F. Tupin,et al.  MONITORING TEMPERATE GLACIER : COMBINED USE OF MULTI-DATE TERRASAR-X IMAGES AND CONTINUOUS GPS MEASUREMENTS , 2009 .

[17]  M. Strintzis,et al.  Maximum likelihood motion estimation in ultrasound image sequences , 1997, IEEE Signal Processing Letters.

[18]  Gabriel Vasile,et al.  Hierarchical segmentation of Polarimetric SAR images using heterogeneous clutter models , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[19]  Steeve Zozor,et al.  Some Results on the Denoising Problem in the Elliptically Distributed Context , 2010, IEEE Transactions on Signal Processing.

[20]  D. R. Fatland,et al.  Comparison of SAR-interferometric and surveyed velocities on a mountain glacier: Black Rapids Glacier, Alaska, U.S.A. , 2000, Journal of Glaciology.

[21]  N H Short,et al.  Potential for RADARSAT-2 interferometry: glacier monitoring using speckle tracking , 2004 .

[22]  Philippe Forster,et al.  Performance Analysis of Covariance Matrix Estimates in Impulsive Noise , 2008, IEEE Transactions on Signal Processing.

[23]  Lionel Bombrun,et al.  Fisher Distribution for Texture Modeling of Polarimetric SAR Data , 2008, IEEE Geoscience and Remote Sensing Letters.

[24]  K. Ranson,et al.  K-distribution for multi-look processed polarimetric SAR imagery , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[25]  Urs Wegmüller,et al.  Glacier motion estimation using SAR offset-tracking procedures , 2002, IEEE Trans. Geosci. Remote. Sens..

[26]  Alejandro C. Frery,et al.  The polarimetric 𝒢 distribution for SAR data analysis , 2005 .

[27]  Henri Maître,et al.  A new statistical model for Markovian classification of urban areas in high-resolution SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[28]  K. Jezek,et al.  Velocities and Flux of the Filchner Ice Shelf and its Tributaries Determined from Speckle Tracking Interferometry , 2001 .

[29]  Paris W. Vachon,et al.  Validation of alpine glacier velocity measurements using ERS Tandem-Mission SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[30]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[31]  Esra Erten,et al.  Glacier Velocity Monitoring by Maximum Likelihood Texture Tracking , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[32]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[33]  Jean-Marie Nicolas,et al.  Application de la transformée de Mellin : étude des lois statistiques de l'imagerie cohérente , 2006 .

[34]  Thierry Rabaute,et al.  Radar interferometry: limits and potential , 1993, IEEE Trans. Geosci. Remote. Sens..

[35]  Ian R. Joughin,et al.  Interferometric estimation of three-dimensional ice-flow using ascending and descending passes , 1998, IEEE Trans. Geosci. Remote. Sens..