Castelnuovo–Mumford Regularity and Computing the de Rham Cohomology of Smooth Projective Varieties

We describe a parallel polynomial time algorithm for computing the topological Betti numbers of a smooth complex projective variety X. It is the first single exponential time algorithm for computing the Betti numbers of a significant class of complex varieties of arbitrary dimension. Our main theoretical result is that the Castelnuovo–Mumford regularity of the sheaf of differential p-forms on X is bounded by p(em+1)D, where e, m, and D are the maximal codimension, dimension, and degree, respectively, of all irreducible components of X. It follows that, for a union V of generic hyperplane sections in X, the algebraic de Rham cohomology of X∖V is described by differential forms with poles along V of single exponential order. By covering X with sets of this type and using a Čech process, we obtain a similar description of the de Rham cohomology of X, which allows its efficient computation. Furthermore, we give a parallel polynomial time algorithm for testing whether a projective variety is smooth.

[1]  Peter Scheiblechner,et al.  On the Complexity of Counting Irreducible Components and Computing Betti Numbers of Algebraic Varieties , 2007 .

[2]  Peter Scheiblechner,et al.  On the complexity of counting components of algebraic varieties , 2009, J. Symb. Comput..

[3]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[4]  T. Willmore Algebraic Geometry , 1973, Nature.

[5]  Marc Giusti,et al.  Some Effectivity Problems in Polynomial Ideal Theory , 1984, EUROSAM.

[6]  David Eisenbud,et al.  Linear Free Resolutions and Minimal Multiplicity , 1984 .

[7]  U. Walther Algorithmic Determination of the Rational Cohomology of Complex Varieties via Differential Forms , 2001, math/0103013.

[8]  FROBENIUS AMPLITUDE AND STRONG VANISHING THEOREMS FOR VECTOR BUNDLES , 2002, math/0202129.

[9]  Alexandru Dimca,et al.  Singularities and Topology of Hypersurfaces , 1992 .

[10]  David Mumford,et al.  Lectures on Curves on an Algebraic Surface. (AM-59) , 1966 .

[11]  Bernd Sturmfels,et al.  Computations in Algebraic Geometry with Macaulay 2 , 2001 .

[12]  David Eisenbud,et al.  Sheaf Cohomology and Free Resolutions over Exterior Algebras , 2003 .

[13]  Sijong Kwak Generic projections, the equations defining projective varieties and Castelnuovo regularity , 2000 .

[14]  Saugata Basu,et al.  Computing the first few Betti numbers of semi-algebraic sets in single exponential time , 2006, J. Symb. Comput..

[15]  Wolmer V. Vasconcelos,et al.  Computational methods in commutative algebra and algebraic geometry , 1997, Algorithms and computation in mathematics.

[16]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[17]  Joachim von zur Gathen,et al.  Parallel Arithmetic Computations: A Survey , 1986, MFCS.

[18]  Michel Raynaud,et al.  Geometrie Algebrique Et Geometrie Analytique , 1971 .

[19]  Peter Scheiblechner,et al.  On a generalization of Stickelberger's Theorem , 2010, J. Symb. Comput..

[20]  David Mumford,et al.  What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.

[21]  Gregory G. Smith Computing Global Extension Modules , 2000, J. Symb. Comput..

[22]  David Mumford,et al.  Varieties Defined by Quadratic Equations , 2010 .

[23]  Zbigniew Jelonek,et al.  On the effective Nullstellensatz , 2005 .

[24]  R. Lazarsfeld Classical setting : line bundles and linear series , 2004 .

[25]  Uli Walther,et al.  Algorithmic Computation of de Rham Cohomology of Complements of Complex Affine Varieties , 1998, J. Symb. Comput..

[26]  R. Lazarsfeld A sharp Castelnuovo bound for smooth surfaces , 1987 .

[27]  Robert Lazarsfeld,et al.  On a theorem of Castelnuovo, and the equations defining space curves , 1983 .

[28]  Saugata Basu,et al.  Algorithmic Semi-algebraic Geometry and Topology -- Recent Progress and Open Problems , 2007, ArXiv.

[29]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[30]  M. Atiyah,et al.  Lacunas for hyperbolic differential operators with constant coefficients. II , 1973 .

[31]  M. Atiyah,et al.  Lacunas for hyperbolic differential operators with constant coefficients I , 1970 .

[32]  Peter Scheiblechner,et al.  Counting Irreducible Components of Complex Algebraic Varieties , 2010, computational complexity.

[33]  Agnes Szanto,et al.  Computation with polynomial systems , 1999 .

[34]  Burt Totaro,et al.  HODGE THEORY AND COMPLEX ALGEBRAIC GEOMETRY, I (Cambridge Studies in Advanced Mathematics 76) By C LAIRE V OISIN : 322 pp., £55.00 (US$80.00), ISBN 0-521-80260-1 (Cambridge University Press, 2002). , 2003 .

[35]  David Mumford,et al.  Lectures on curves on an algebraic surface , 1966 .

[36]  P. Deligne,et al.  Filtrations de Hodge et par l'ordre du pôle pour les hypersurfaces singulières , 1990 .

[37]  Joos Heintz,et al.  Algorithmes – disons rapides – pour la décomposition d’une variété algébrique en composantes irréductibles et équidimensionnelles , 1991 .

[38]  Peter Scheiblechner,et al.  On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety , 2007, J. Complex..

[39]  Leila Schneps,et al.  Hodge theory and complex algebraic geometry , 2002 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  Ketan Mulmuley,et al.  A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.

[42]  Bernd Sturmfels,et al.  Syzygies of codimension 2 lattice ideals , 1998 .

[43]  Ágnes Szántó,et al.  Complexity of the Wu-Ritt decomposition , 1997, PASCO '97.

[44]  A. Bertram,et al.  Vanishing theorems, a theorem of Severi, and the equations defining projective varieties , 1991 .

[45]  Peter Bürgisser,et al.  Variations by complexity theorists on three themes of Euler , Bézout , Betti , and Poincaré , 2004 .

[46]  André Galligo,et al.  Théorème de division et stabilité en géométrie analytique locale , 1979 .

[47]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[48]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[49]  Z. Ran Local differential geometry and generic projections of threefolds , 1990 .

[50]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[51]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .

[52]  W. Vogel,et al.  Castelnuovo's regularity and multiplicity , 1988 .

[53]  André Galligo,et al.  Precise sequential and parallel complexity bounds for quantifier elimination over algebraically closed fields , 1990 .

[54]  André Galligo,et al.  Equations for the projective closure and effective Nullstellensatz , 1991, Discret. Appl. Math..

[55]  Nobuki Takayama,et al.  An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation , 1998 .

[56]  D. Bayer,et al.  A criterion for detecting m-regularity , 2008 .

[57]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[58]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[59]  P. Deligne,et al.  Equations differentielles à points singuliers reguliers , 1970 .

[60]  John McCleary,et al.  User's Guide to Spectral Sequences , 1985 .

[61]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[62]  Noaï Fitchas,et al.  Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen‐Suslin) pour le Calcul Formel , 1990 .

[63]  Ernst W. Mayr,et al.  Some Complexity Results for Polynomial Ideals , 1997, J. Complex..

[64]  On the Castelnuovo-Mumford regularity of connected curves , 2003, math/0309051.

[65]  H. Pinkham,et al.  A Castelnuovo bound for smooth surfaces , 1986 .

[66]  Robert Lazarsfeld,et al.  Positivity in algebraic geometry , 2004 .