Stability region of K0.2Na0.8AlSi3O8 hollandite at 22 GPa and 2273 K

[1]  H. Kojitani,et al.  High-pressure phase transitions and subduction behavior of continental crust at pressure–temperature conditions up to the upper part of the lower mantle , 2012 .

[2]  R. Caracas,et al.  Elasticity of (K,Na)AlSi3O8 hollandite from lattice dynamics calculations , 2010 .

[3]  K. Nakanishi,et al.  High-pressure phase relations in the system CaAl4Si2O11–NaAl3Si3O11 with implication for Na-rich CAS phase in shocked Martian meteorites , 2010 .

[4]  L. Dubrovinsky,et al.  High-pressure ferroelastic phase transition in aluminosilicate hollandite , 2009 .

[5]  M. Miyahara,et al.  Transformation textures, mechanisms of formation of high‐pressure minerals in shock melt veins of L6 chondrites, and pressure‐temperature conditions of the shock events , 2009 .

[6]  Lin‐gun Liu,et al.  High-Pressure Phase Transitions of the Feldspars, and Further Characterization of Lingunite , 2007 .

[7]  F. Tutti Formation of end-member NaAlSi3O8 hollandite-type structure (lingunite) in diamond anvil cell , 2007 .

[8]  Xi Liu Phase relations in the system KAlSi3O8–NaAlSi3O8 at high pressure–high temperature conditions and their implication for the petrogenesis of lingunite , 2006 .

[9]  T. Ferroir,et al.  Equation of state and phase transition in KAlSi3O8 hollandite at high pressure , 2006 .

[10]  P. Decarli,et al.  High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: Constraints on shock pressure and duration , 2006 .

[11]  D. Yamazaki,et al.  Stability and P–V–T equation of state of KAlSi3O8-hollandite determined by in situ X-ray observations and implications for dynamics of subducted continental crust material , 2005 .

[12]  T. Ferroir,et al.  A new high‐pressure form of KAlSi3O8 under lower mantle conditions , 2004 .

[13]  T. Kondo,et al.  Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size , 2004 .

[14]  K. Hirose,et al.  Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications , 2004 .

[15]  N. Tomioka,et al.  Shock‐induced transition of NaAlSi3O8 feldspar into a hollandite structure in a L6 chondrite , 2000 .

[16]  T. Kikegawa,et al.  In situ determination of the phase boundary between Wadsleyite and Ringwoodite in Mg2SiO4 , 2000 .

[17]  L. Dubrovinsky,et al.  Natural NaAlSi(3)O(8)-hollandite in the shocked sixiangkou meteorite , 2000, Science.

[18]  T. Sharp,et al.  The Majorite-Pyrope + Magnesiowüstite Assemblage: Constraints on the History of Shock Veins in Chondrites , 1996, Science.

[19]  C. Agee,et al.  Pressure‐temperature phase diagram for the Allende meteorite , 1995 .

[20]  O. Shimomura,et al.  Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8 , 1994 .

[21]  Jianzhong Zhang,et al.  Melting experiments on anhydrous peridotite KLB‐1 from 5.0 to 22.5 GPa , 1994 .

[22]  T. Kikegawa,et al.  The Phase Boundary Between α- and β-Mg2SiO4 Determined by in Situ X-ray Observation , 1994, Science.

[23]  A. Yagi,et al.  High pressure transitions in the system KAlSi3O8-NaAlSi3O8 , 1994 .

[24]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[25]  A. E. Ringwood,et al.  High-pressure KAlSi3O8, an aluminosilicate with sixfold coordination , 1967 .

[26]  Masashi Yamamoto,et al.  EDS quantification of light elements using osmium surface coating , 2015 .

[27]  K. Kawai,et al.  First-principles study on the high-pressure phase transition and elasticity of KAlSi3O8 hollandite , 2013 .

[28]  H. Kojitani,et al.  High-pressure phase relations of hollandite in the system KAlSi3O8-NaAlSi3O8 , 2005 .

[29]  E. Ito,et al.  Crystal-chemical characterization of KAlSi3O8 with the hollandite structure , 1984 .

[30]  Lin‐gun Liu High-pressure phase transformations of albite, jadeite and nepheline , 1978 .