Adding atmospheric scattering and transparency to a deferred rendering pipeline for camera based ADAS tests

This paper describes the implementation of a real-time global illumination model (atmospheric scattering and transparency) based on deferred rendering for the realization of virtual test drives used for the evaluation of camera based ADAS. Atmospheric scattering and transparent objects (e.g. windows) contribute to a realistic visualization of outdoor street scenes. However, both are not considered in the basic deferred rendering pipeline. To create an adequate adaption, the in ̄uence of the atmospheric scattering on transparent objects has to be considered. This work compares several techniques for the integration of transparency in the deferred rendering global illumination model. The realization of an A-Buffer implemented as Linked List provides the best results concerning the image quality. Weighted Blended Order-Independent Transparency also achieves adequate results. Inferred Lighting is inapplicable for the given use case.

[1]  Naty Hoffman,et al.  Background: Physics and Math of Shading , 2012 .

[2]  Mirko Nentwig Untersuchungen zur Anwendung von computergenerierten Kamerabildern für die Entwicklung und den Test von Fahrerassistenzsystemen , 2014 .

[3]  Morgan McGuire,et al.  Weighted Blended Order-Independent Transparency , 2013 .

[4]  Justin Hensley,et al.  Real‐Time Concurrent Linked List Construction on the GPU , 2010, Comput. Graph. Forum.

[5]  Oskar Elek,et al.  Real-time spectral scattering in large-scale natural participating media , 2010, SCCG.

[6]  Takashi Okamoto,et al.  Photorealistic image synthesis for outdoor scenery under various atmospheric conditions , 1991, The Visual Computer.

[7]  R. Victor Klassen,et al.  Modeling the effect of the atmosphere on light , 1987, TOGS.

[8]  Paul Varcholik Real-Time 3D Rendering with DirectX and HLSL: A Practical Guide to Graphics Programming , 2014 .

[9]  João Luiz Dihl Comba,et al.  A survey of raster-based transparency techniques , 2011, Comput. Graph..

[10]  Luca Konig,et al.  Light And Color In The Outdoors , 2016 .

[11]  David A. Goss,et al.  Color and Light in Nature , 1997 .

[12]  Loren C. Carpenter,et al.  The A -buffer, an antialiased hidden surface method , 1984, SIGGRAPH.

[13]  Fabrice Neyret,et al.  Precomputed Atmospheric Scattering , 2008, Comput. Graph. Forum.

[14]  Changbo Wang Real-Time Rendering of Daylight Sky Scene for Virtual Environment , 2007, ICEC.

[15]  Andre Schollmeyer,et al.  Order‐Independent Transparency for Programmable Deferred Shading Pipelines , 2015, Comput. Graph. Forum.

[16]  Louis Bavoil,et al.  Order Independent Transparency with Dual Depth Peeling , 2008 .

[17]  Robin Wolff,et al.  Physically Based Rendering of the Martian Atmosphere , 2013 .

[18]  Eric Lengyel,et al.  Game Engine Gems 2 , 2011 .

[19]  Samuel Hornus,et al.  Per-Pixel Lists for Single Pass A-Buffer , 2014 .

[20]  Scott Kircher,et al.  Inferred lighting: fast dynamic lighting and shadows for opaque and translucent objects , 2009, SIGGRAPH 2009.

[21]  Martin Falk,et al.  Real-Time Rendering of Planets with Atmospheres , 2007, J. WSCG.