Networking erythropoiesis

Recent findings and technological advances provide insight into how a few transcription factors work together in complex ways to orchestrate red blood cell differentiation.

[1]  Jing Jiang,et al.  miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. , 2010, Genes & development.

[2]  Timothy L Bailey,et al.  A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. , 2010, Genome research.

[3]  Shamit Soneji,et al.  Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. , 2010, Genome research.

[4]  Xiaoxia Qi,et al.  Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. , 2010, Genes & development.

[5]  Anton J. Enright,et al.  The miR-144/451 locus is required for erythroid homeostasis , 2010, The Journal of experimental medicine.

[6]  S. Orkin,et al.  Sumoylation Regulates Interaction of FOG1 with C-terminal-binding Protein (CTBP)* , 2010, The Journal of Biological Chemistry.

[7]  Wang Min,et al.  SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis , 2010, The Journal of experimental medicine.

[8]  Christine Steinhoff,et al.  The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. , 2010, Genes & development.

[9]  Francesca Chiaromonte,et al.  Erythroid GATA 1 function revealed by genome-wide analysis of transcription factor occupancy , histone modifications , and mRNA expression , 2009 .

[10]  Ernest Fraenkel,et al.  Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. , 2009, Molecular cell.

[11]  Henriette O'Geen,et al.  Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. , 2009, Molecular cell.

[12]  A. Mortazavi,et al.  Computation for ChIP-seq and RNA-seq studies , 2009, Nature Methods.

[13]  Mark A. Dawson,et al.  The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. , 2009, Blood.

[14]  R. Hardison,et al.  SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. , 2008, Blood.

[15]  P. Vyas,et al.  Differential use of SCL/TAL-1 DNA-binding domain in developmental hematopoiesis. , 2008, Blood.

[16]  Xiaowu Gai,et al.  A GATA-1-regulated microRNA locus essential for erythropoiesis , 2008, Proceedings of the National Academy of Sciences.

[17]  Jonghwan Kim,et al.  Epigenetic regulation of hematopoietic differentiation by Gfi-1 and Gfi-1b is mediated by the cofactors CoREST and LSD1. , 2007, Molecular cell.

[18]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[19]  Daniel Chourrout,et al.  Genome Regulation by Polycomb and Trithorax Proteins , 2007, Cell.

[20]  G. Blobel,et al.  Acetylation of GATA-1 is required for chromatin occupancy. , 2006, Blood.

[21]  A. McDowall,et al.  A global role for EKLF in definitive and primitive erythropoiesis. , 2005, Blood.

[22]  Kirby D. Johnson,et al.  Developmental control via GATA factor interplay at chromatin domains , 2005, Journal of cellular physiology.

[23]  Jeroen Krijgsveld,et al.  GATA‐1 forms distinct activating and repressive complexes in erythroid cells , 2005, The EMBO journal.

[24]  G. Blobel,et al.  FOG‐1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA‐1 , 2005, The EMBO journal.

[25]  S. Orkin,et al.  Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene , 2003, Nature.

[26]  Brigitte Wild,et al.  Histone Methyltransferase Activity of a Drosophila Polycomb Group Repressor Complex , 2002, Cell.

[27]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[28]  S. Orkin,et al.  Transcriptional regulation of erythropoiesis: an affair involving multiple partners , 2002, Oncogene.

[29]  G. Blobel,et al.  CREB-Binding Protein Acetylates Hematopoietic Transcription Factor GATA-1 at Functionally Important Sites , 1999, Molecular and Cellular Biology.

[30]  V. Ogryzko,et al.  Regulation of activity of the transcription factor GATA-1 by acetylation , 1998, Nature.

[31]  C. Peschle,et al.  Chromatin immunoselection defines a TAL‐1 target gene , 1998, The EMBO journal.

[32]  T. Rabbitts,et al.  The LIM‐only protein Lmo2 is a bridging molecule assembling an erythroid, DNA‐binding complex which includes the TAL1, E47, GATA‐1 and Ldb1/NLI proteins , 1997, The EMBO journal.

[33]  S. Orkin,et al.  Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line , 1997, Molecular and cellular biology.

[34]  J. Bieker,et al.  A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins , 1993, Molecular and cellular biology.

[35]  G. Felsenfeld,et al.  The erythroid-specific transcription factor eryf1: A new finger protein , 1989, Cell.

[36]  F. Grosveld,et al.  The human beta-globin gene 3' enhancer contains multiple binding sites for an erythroid-specific protein. , 1988, Genes & development.