Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics

[1]  Andreas Klaus,et al.  Altered avalanche dynamics in a developmental NMDAR hypofunction model of cognitive impairment , 2018, Translational Psychiatry.

[2]  Shan Yu,et al.  Maintained avalanche dynamics during task-induced changes of neuronal activity in nonhuman primates , 2017, eLife.

[3]  Rémi Monasson,et al.  Sensorimotor computation underlying phototaxis in zebrafish , 2017, Nature Communications.

[4]  Germán Sumbre,et al.  Functional Interactions between Newborn and Mature Neurons Leading to Integration into Established Neuronal Circuits , 2017, Current Biology.

[5]  Germán Sumbre,et al.  An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics , 2017, PLoS Comput. Biol..

[6]  Jordi Soriano,et al.  Dominance of Metric Correlations in Two-Dimensional Neuronal Cultures Described through a Random Field Ising Model. , 2017, Physical review letters.

[7]  Won-Ki Jeong,et al.  Whole-brain serial-section electron microscopy in larval zebrafish , 2017, Nature.

[8]  Woodrow L. Shew,et al.  Adaptation towards scale-free dynamics improves cortical stimulus discrimination at the cost of reduced detection , 2017, PLoS Comput. Biol..

[9]  Gustavo Deco,et al.  Spontaneous cortical activity is transiently poised close to criticality , 2017, PLoS Comput. Biol..

[10]  V. Priesemann,et al.  Subsampling scaling , 2017, Nature Communications.

[11]  Nicholas Bennett,et al.  Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox , 2016, Front. Physiol..

[12]  Lilach Avitan,et al.  Limitations of Neural Map Topography for Decoding Spatial Information , 2016, The Journal of Neuroscience.

[13]  Germán Sumbre,et al.  Automatic classification of behavior in zebrafish larvae , 2016, bioRxiv.

[14]  Andreas Klaus,et al.  Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state , 2015, eLife.

[15]  Woodrow L. Shew,et al.  Adaptation to sensory input tunes visual cortex to criticality , 2015, Nature Physics.

[16]  Germán Sumbre,et al.  Spontaneous Neuronal Network Dynamics Reveal Circuit’s Functional Adaptations for Behavior , 2015, Neuron.

[17]  Paolo Massobrio,et al.  Criticality as a signature of healthy neural systems , 2015, Front. Syst. Neurosci..

[18]  Woodrow L. Shew,et al.  Voltage Imaging of Waking Mouse Cortex Reveals Emergence of Critical Neuronal Dynamics , 2014, The Journal of Neuroscience.

[19]  D. Plenz,et al.  On the temporal organization of neuronal avalanches , 2014, Front. Syst. Neurosci..

[20]  Jochen Triesch,et al.  Spike avalanches in vivo suggest a driven, slightly subcritical brain state , 2014, Front. Syst. Neurosci..

[21]  Jaume Casademunt,et al.  Noise focusing and the emergence of coherent activity in neuronal cultures , 2013, Nature Physics.

[22]  Jorge Hidalgo,et al.  Information-based fitness and the emergence of criticality in living systems , 2013, Proceedings of the National Academy of Sciences.

[23]  Germán Sumbre,et al.  Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy , 2013, BMC Neuroscience.

[24]  D. Plenz,et al.  powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions , 2013, PloS one.

[25]  Thomas Panier,et al.  Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy , 2013, BMC Neuroscience.

[26]  Olaf Sporns,et al.  Network attributes for segregation and integration in the human brain , 2013, Current Opinion in Neurobiology.

[27]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[28]  Woodrow L. Shew,et al.  The Functional Benefits of Criticality in the Cortex , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[29]  Larry D. Wittie,et al.  Analyzing the Effects of Gap Junction Blockade on Neural Synchrony via a Motoneuron Network Computational Model , 2012, Comput. Intell. Neurosci..

[30]  Sui Huang,et al.  Criticality Is an Emergent Property of Genetic Networks that Exhibit Evolvability , 2012, PLoS Comput. Biol..

[31]  D. Plenz,et al.  Neuronal Avalanches in the Resting MEG of the Human Brain , 2012, The Journal of Neuroscience.

[32]  John M. Beggs,et al.  Universal critical dynamics in high resolution neuronal avalanche data. , 2012, Physical review letters.

[33]  Herwig Baier,et al.  Emergence of Patterned Activity in the Developing Zebrafish Spinal Cord , 2012, Current Biology.

[34]  Pablo Balenzuela,et al.  Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis , 2012, Front. Physio..

[35]  Biyu J. He Scale-Free Properties of the Functional Magnetic Resonance Imaging Signal during Rest and Task , 2011, The Journal of Neuroscience.

[36]  K. Kawakami,et al.  Imaging functional neural circuits in zebrafish with a new GCaMP and the Gal4FF-UAS system , 2011, Communicative & integrative biology.

[37]  Andreas Klaus,et al.  Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches , 2011, PloS one.

[38]  Edward T. Bullmore,et al.  Failure of Adaptive Self-Organized Criticality during Epileptic Seizure Attacks , 2011, PLoS Comput. Biol..

[39]  D. Chialvo,et al.  Self-similar correlation function in brain resting-state functional magnetic resonance imaging , 2010, Journal of The Royal Society Interface.

[40]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[41]  John M. Beggs,et al.  Aberrant Neuronal Avalanches in Cortical Tissue Removed From Juvenile Epilepsy Patients , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[42]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[43]  W. Singer,et al.  Neuronal avalanches in spontaneous activity in vivo. , 2010, Journal of neurophysiology.

[44]  M. Magnasco,et al.  Self-tuned critical anti-Hebbian networks. , 2009, Physical review letters.

[45]  L. L. Bologna,et al.  Self-organization and neuronal avalanches in networks of dissociated cortical neurons , 2008, Neuroscience.

[46]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[47]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[48]  V. Torre,et al.  On the Dynamics of the Spontaneous Activity in Neuronal Networks , 2007, PloS one.

[49]  S. Stanchits,et al.  Scaling and universality in rock fracture. , 2006, Physical review letters.

[50]  Alvaro Corral,et al.  Statistical Features of Earthquake Temporal Occurrence , 2006, cond-mat/0604574.

[51]  Carsten Wiuf,et al.  Subnets of scale-free networks are not scale-free: sampling properties of networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Sethna,et al.  Random-field ising models of hysteresis , 2004, cond-mat/0406320.

[53]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[54]  M. Alava,et al.  Percolation in three-dimensional random field Ising magnets , 2002, cond-mat/0206376.

[55]  T. Iguchi,et al.  Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. , 2002, The Journal of experimental biology.

[56]  R. A. White,et al.  Crackling noise, power spectra, and disorder-induced critical scaling , 2001, cond-mat/0112133.

[57]  N Kopell,et al.  Gap Junctions between Interneuron Dendrites Can Enhance Synchrony of Gamma Oscillations in Distributed Networks , 2001, The Journal of Neuroscience.

[58]  J. Sethna,et al.  Crackling noise , 2001, Nature.

[59]  Pierre Drapeau,et al.  Motoneuron Activity Patterns Related to the Earliest Behavior of the Zebrafish Embryo , 2000, The Journal of Neuroscience.

[60]  T J Lewis,et al.  Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions , 2000, Network.

[61]  J. Sethna,et al.  Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models , 1999, cond-mat/9911207.

[62]  D. Stauffer,et al.  Random Site Percolation in Three Dimensions , 1998 .

[63]  J. Sethna,et al.  Avalanches, Barkhausen noise, and plain old criticality. , 1995, Physical review letters.

[64]  J. Sethna,et al.  Crackling noise : Complex systems , 2001 .

[65]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[66]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.