Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2.

[1]  O. Katare,et al.  Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae-induced lobar pneumonia. , 2015, The Journal of infectious diseases.

[2]  D. Davidson,et al.  Cathelicidin Host Defence Peptide Augments Clearance of Pulmonary Pseudomonas aeruginosa Infection by Its Influence on Neutrophil Function In Vivo , 2014, PloS one.

[3]  M. Mandal,et al.  Identification of multifunctional peptides from human milk , 2014, Peptides.

[4]  Marco M. Domingues,et al.  Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria. , 2014, Nanomedicine : nanotechnology, biology, and medicine.

[5]  O. Franco,et al.  In vivo antimicrobial evaluation of an alanine-rich peptide derived from Pleuronectes americanus , 2013, Peptides.

[6]  O. Franco,et al.  Structural and Functional Characterization of a Multifunctional Alanine-Rich Peptide Analogue from Pleuronectes americanus , 2012, PloS one.

[7]  Lei Zhang,et al.  Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: Gaining insight into a new mechanism for the functional diversification of scorpion venom peptides , 2012, Peptides.

[8]  M. Mandal,et al.  Identification and characterization of a bactericidal and proapoptotic peptide from cycas revoluta seeds with DNA binding properties , 2012, Journal of cellular biochemistry.

[9]  O. Franco,et al.  Cn-AMP1: a new promiscuous peptide with potential for microbial infections treatment. , 2012, Biopolymers.

[10]  Daniel J Rigden,et al.  Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system application. , 2012, Biopolymers.

[11]  Yung-Hua Li,et al.  A Novel Target-Specific, Salt-Resistant Antimicrobial Peptide against the Cariogenic Pathogen Streptococcus mutans , 2011, Antimicrobial Agents and Chemotherapy.

[12]  O. Franco Peptide promiscuity: An evolutionary concept for plant defense , 2011, FEBS letters.

[13]  B. Bechinger,et al.  Insights into the mechanisms of action of host defence peptides from biophysical and structural investigations , 2011, Journal of peptide science : an official publication of the European Peptide Society.

[14]  A. Ramamoorthy,et al.  Structure, interactions, and antibacterial activities of MSI-594 derived mutant peptide MSI-594F5A in lipopolysaccharide micelles: role of the helical hairpin conformation in outer-membrane permeabilization. , 2010, Journal of the American Chemical Society.

[15]  M. X. Fernandes,et al.  Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR* , 2010, The Journal of Biological Chemistry.

[16]  Miguel A. R. B. Castanho,et al.  rBPI21 Promotes Lipopolysaccharide Aggregation and Exerts Its Antimicrobial Effects by (Hemi)fusion of PG-Containing Membranes , 2009, PloS one.

[17]  S. H. Park,et al.  Antimicrobial effect and membrane‐active mechanism of Urechistachykinins, neuropeptides derived from Urechis unicinctus , 2008, FEBS letters.

[18]  Changiz Eslahchi,et al.  A tale of two symmetrical tails: Structural and functional characteristics of palindromes in proteins , 2008, BMC Bioinformatics.

[19]  D. Cutler,et al.  The Lifetime Costs and Benefits of Medical Technology , 2007, Journal of health economics.

[20]  Oreola Donini,et al.  An anti-infective peptide that selectively modulates the innate immune response , 2007, Nature Biotechnology.

[21]  K. Sumathi,et al.  3dSS: 3D structural superposition , 2006, Nucleic Acids Res..

[22]  G. Quindós,et al.  Antifungal agents: mode of action in yeast cells. , 2006, Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia.

[23]  B. Ho,et al.  The specificity of Sushi peptides for endotoxin and anionic phospholipids: potential application of POPG as an adjuvant for anti-LPS strategies. , 2006, Biochemical Society transactions.

[24]  G. Andrés,et al.  Antifúngicos: mecanismo de acción en células de levaduras , 2006 .

[25]  Kai Hilpert,et al.  High-throughput generation of small antibacterial peptides with improved activity , 2005, Nature Biotechnology.

[26]  Robert E W Hancock,et al.  Design of host defence peptides for antimicrobial and immunity enhancing activities. , 2005, Combinatorial chemistry & high throughput screening.

[27]  Y. Shai,et al.  Host defense peptides as new weapons in cancer treatment , 2005, Cellular and Molecular Life Sciences CMLS.

[28]  Peng Li,et al.  Perturbation of Lipopolysaccharide (LPS) Micelles by Sushi 3 (S3) Antimicrobial Peptide , 2004, Journal of Biological Chemistry.

[29]  H. Jenssen,et al.  Anti‐HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface , 2004, Journal of medical virology.

[30]  Zhe Wang,et al.  APD: the Antimicrobial Peptide Database , 2004, Nucleic Acids Res..

[31]  O. Teschke,et al.  Effects of the antimicrobial peptide PGLa on live Escherichia coli. , 2003, Biochimica et biophysica acta.

[32]  V. Foubister New mode of intervention in sepsis treatment. , 2003, Drug Discovery Today.

[33]  H. Hammad,et al.  Presence of chromogranin-derived antimicrobial peptides in plasma during coronary artery bypass surgery and evidence of an immune origin of these peptides. , 2002, Blood.

[34]  J. Mackay,et al.  Solution structure of a hydrophobic analogue of the winter flounder antifreeze protein. , 2002, European journal of biochemistry.

[35]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[36]  P. Bulet,et al.  Crustacean Immunity , 2001, The Journal of Biological Chemistry.

[37]  Nikolaus Blin,et al.  Dermcidin: a novel human antibiotic peptide secreted by sweat glands , 2001, Nature Immunology.

[38]  R. Hancock,et al.  Cationic peptides: effectors in innate immunity and novel antimicrobials. , 2001, The Lancet. Infectious diseases.

[39]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[40]  K. Matsuzaki,et al.  Polar Angle as a Determinant of Amphipathic α-Helix-Lipid Interactions: A Model Peptide Study , 2000 .

[41]  J. Leem,et al.  Isolation of p‐hydroxycinnamaldehyde as an antibacterial substance from the saw fly, Acantholyda parki S , 1999, FEBS letters.

[42]  T. Walsh,et al.  Antifungal Peptides: Novel Therapeutic Compounds against Emerging Pathogens , 1999, Antimicrobial Agents and Chemotherapy.

[43]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[44]  T. Mashimo,et al.  Antimicrobial activity of a 13 amino acid tryptophan‐rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides , 1996, FEBS letters.

[45]  C. Hew,et al.  Skin Antifreeze Protein Genes of the Winter Flounder, Pleuronectes americanus, Encode Distinct and Active Polypeptides without the Secretory Signal and Prosequences (*) , 1996, The Journal of Biological Chemistry.

[46]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[47]  J. Dufourcq,et al.  The amphipathic α‐helix concept , 1994 .

[48]  A. Fersht,et al.  Quantitative determination of helical propensities from trifluoroethanol titration curves. , 1994, Biochemistry.

[49]  J. Dufourcq,et al.  The amphipathic alpha-helix concept. Application to the de novo design of ideally amphipathic Leu, Lys peptides with hemolytic activity higher than that of melittin. , 1994, FEBS letters.

[50]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[51]  J. Werkmeister,et al.  The effect of sequence variations and structure on the cytolytic activity of melittin peptides. , 1993, Biochimica et biophysica acta.

[52]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[53]  P. Guptasarma,et al.  Reversal of peptide backbone direction may result in the mirroring of protein structure , 1992, FEBS letters.

[54]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[55]  L. Tamm,et al.  Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. , 1991, Biophysical journal.

[56]  L. Mayer,et al.  Vesicles of variable sizes produced by a rapid extrusion procedure. , 1986, Biochimica et biophysica acta.

[57]  B. Roelofsen,et al.  The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. , 1973, Biochimica et biophysica acta.

[58]  A. Gotto,et al.  Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine. , 1973, Biochemistry.

[59]  G. Kreil,et al.  Biosynthesis of melittin, a toxic peptide from bee venom. Detection of a possible precursor. , 1971, European journal of biochemistry.

[60]  G. Rouser,et al.  Precise quantitative determination of human blood lipids by thin-layer and triethylaminoethylcellulose column chromatography: II. Plasma lipids , 1970 .

[61]  G. Rouser,et al.  Precise quantitative determination of human blood lipids by thin-layer and triethylaminoethylcellulose column chromatography. II. Plasma lipids. , 1970, Analytical biochemistry.

[62]  M. Kies,et al.  Note on spectrophotometric determination of proteins in dilute solutions , 1960 .