Updating Absolute Radiometric Characteristics for KOMPSAT-3 and KOMPSAT-3A Multispectral Imaging Sensors Using Well-Characterized Pseudo-Invariant Tarps and Microtops II

Radiometric calibration of satellite imaging sensors should be performed periodically to account for the effect of sensor degradation in the space environment on image accuracy. In this study, we performed vicarious radiometric calibrations (relying on in situ data) of multispectral imaging sensors on the Korea multi-purpose satellite-3 and -3A (KOMPSAT-3 and -3A) to adjust the existing radiometric conversion coefficients according to time delay integration (TDI) adjustments and sensor degradation over time. The Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer model was used to obtain theoretical top of atmosphere radiances for both satellites. As input parameters for the 6S model, surface reflectance values of well-characterized pseudo-invariant tarps were measured using dual ASD FieldSpec® 3 hyperspectral radiometers, and atmospheric conditions were measured using Microtops II® Sunphotometer and Ozonometer. We updated the digital number (DN) of the radiance coefficients of the satellites; these had been used to calibrate the sensors during in-orbit test periods in 2013 and 2015. The coefficients of determination, R2, values between observed DNs of the sensors, and simulated radiances for the tarps were more than 0.999. The calibration errors were approximately 5.7% based on manifested error sources. We expect that the updated coefficients will be an important reference for KOMPSAT-3 and -3A users.

[1]  Michael J. Choate,et al.  Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper plus radiometric and geometric calibrations and corrections on landscape characterization , 2001 .

[2]  Xiaoxiong Xiong,et al.  An overview of MODIS radiometric calibration and characterization , 2006 .

[3]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[4]  Michael E. Schaepman,et al.  Fast and simple model for atmospheric radiative transfer , 2010 .

[5]  Satoshi Sekiguchi,et al.  Cross Calibration of Formosat-2 Remote Sensing Instrument (RSI) Using Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Byung-Ju Sohn,et al.  Assessment of the calibration performance of satellite visible channels using cloud targets: application to Meteosat-8/9 and MTSAT-1R , 2010 .

[7]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[8]  Philip N. Slater,et al.  Calibration of Space-Multispectral Imaging Sensors , 1999 .

[9]  Jisoo Hwang,et al.  Absolute measurement of hyperspectral and angular reflection. , 2014, Applied optics.

[10]  G. Georgiev,et al.  Laboratory-based bidirectional reflectance distribution functions of radiometric tarps. , 2008, Applied optics.

[11]  Jisoo Hwang,et al.  Radiometric Characteristics of KOMPSAT-3 Multispectral Images Using the Spectra of Well-Known Surface Tarps , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[12]  A. Ångström The parameters of atmospheric turbidity , 1964 .

[13]  G. Thuillier,et al.  The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .

[14]  Eyal Ben-Dor,et al.  A NEW MODEL-DRIVEN CORRECTION FACTOR FOR BRDF EFFECTS IN HRS DATA , 2005 .

[15]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[16]  W. Hovis,et al.  Aircraft measurements for calibration of an orbiting spacecraft sensor. , 1985, Applied optics.

[17]  Xiaoxiong Xiong,et al.  Absolute Radiometric Calibration of Landsat Using a Pseudo Invariant Calibration Site , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[18]  K. Thome Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method , 2001 .

[19]  K. Thome,et al.  Radiometric Characterization of IKONOS Multispectral Imagery , 2003 .

[20]  Aixia Yang,et al.  Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors , 2017, Sensors.

[21]  P. M. Teilleta,et al.  A generalized approach to the vicarious calibration of multiple Earth observation sensors using hyperspectral data , 2001 .

[22]  Hae-Jin Choi,et al.  Geometric Calibration and Validation of Kompsat-3A AEISS-A Camera , 2016, Sensors.

[23]  Aisheng Wu,et al.  Effects of land cover type and greenness on advanced very high resolution radiometer bidirectional reflectances : analysis and removal , 1995 .

[24]  G. Chander,et al.  Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites , 2010 .

[25]  Jin Soo Kim,et al.  Radiometric characterization and validation for the KOMPSAT-3 sensor , 2015 .

[26]  B. Markham,et al.  Forty-year calibrated record of earth-reflected radiance from Landsat: A review , 2012 .

[27]  Hirokazu Yamamoto,et al.  Cross-Calibration between ASTER and MODIS Visible to Near-Infrared Bands for Improvement of ASTER Radiometric Calibration , 2017, Sensors.

[28]  Satoshi Tsuchida,et al.  Inter-Band Radiometric Comparison and Calibration of ASTER Visible and Near-Infrared Bands , 2015, Remote. Sens..

[29]  Kurtis J. Thome,et al.  Vicarious Radiometric Calibrations of EOS Sensors , 1996 .

[30]  Kohei Arai,et al.  Preflight and in-flight calibration plan for ASTER , 1996 .

[31]  B. Franz,et al.  Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. , 2007, Applied optics.

[32]  Jisoo Hwang,et al.  Initial Radiometric Characteristics of KOMPSAT-3A Multispectral Imagery Using the 6S Radiative Transfer Model, Well-Known Radiometric Tarps, and MFRSR Measurements , 2017, Remote. Sens..

[33]  John P. Burrows,et al.  Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS , 2010 .

[34]  Jaein Kim,et al.  Evaluation of the performance of KOMPSAT-3 stereo images in terms of positioning and the generation of digital surface models , 2016 .

[35]  Akihide Kamei,et al.  Vicarious Calibration of the Formosat-2 Remote Sensing Instrument , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[36]  P Koepke,et al.  Vicarious satellite calibration in the solar spectral range by means of calculated radiances and its application to Meteosat. , 1982, Applied optics.

[37]  Kohei Arai,et al.  Vicarious Calibration of ASTER via the Reflectance-Based Approach , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[38]  R. Denham,et al.  An operational radiometric calibration procedure for the Landsat sensors based on pseudo-invariant target sites , 2007 .

[39]  Dongyeob Han,et al.  Detection of theUnified Control Points for RPCAdjustment of KOMPSAT-3 Satellite Image , 2014 .

[40]  R. P. Prajapati,et al.  Absolute vicarious calibration of OCM2 and AWiFS sensors using a reflectance-based method over land sites in the Rann of Kutch, Gujarat , 2013 .

[41]  David Crisp,et al.  Long-Term Vicarious Calibration of GOSAT Short-Wave Sensors: Techniques for Error Reduction and New Estimates of Radiometric Degradation Factors , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[42]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[43]  B. Markham,et al.  Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges , 2003, IEEE Trans. Geosci. Remote. Sens..

[44]  K. V. S. Badarinath,et al.  Aerosol climatology: dependence of the Angstrom exponent on wavelength over four AERONET sites , 2007 .

[45]  C. Rao,et al.  Post-launch calibration of meteorological satellite sensors , 1999 .

[46]  Younsoo Kim,et al.  Orthorectification of KOMPSAT Optical Images Using Various Ground Reference Data and Accuracy Assessment , 2017, J. Sensors.

[47]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. , 2007, Applied optics.

[48]  Victoria E. Cachorro,et al.  Columnar physical and radiative properties of atmospheric aerosols in north central Spain , 2000 .

[49]  Stuart F. Biggar,et al.  Characterization and field use of a CCD camera system for retrieval of bidirectional reflectance distribution function , 2001 .

[50]  Taejung Kim,et al.  Analysis of Geometric and Spatial Image Quality of KOMPSAT-3A Imagery in Comparison with KOMPSAT-3 Imagery , 2017 .

[51]  Kurtis J. Thome,et al.  Vicarious radiometric calibration of EO-1 sensors by reference to high-reflectance ground targets , 2003, IEEE Trans. Geosci. Remote. Sens..