Ideal quantum reading of optical memories

Quantum reading is the art of exploiting the quantum properties of light to retrieve classical information stored in an optical memory with low energy and high accuracy. Focusing on the ideal scenario where noise and loss are negligible, we review previous works on the optimal strategies for minimal-error retrieving of information (ambiguous quantum reading) and perfect but probabilistic retrieving of information (unambiguous quantum reading). The optimal strategies largely overcome the optimal coherent protocols (reminiscent of common CD readers), further allowing for perfect discrimination. Experimental proposals for optical implementations of optimal quantum reading are provided.

[1]  Michele Dall'Arno,et al.  Experimental implementation of unambiguous quantum reading , 2012 .

[2]  U. Leonhardt Quantum physics of simple optical instruments , 2003, quant-ph/0305007.

[3]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[4]  Ranjith Nair,et al.  Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection , 2011, 1105.4063.

[5]  Konrad Banaszek,et al.  Operational theory of homodyne detection , 1997 .

[6]  Runyao Duan,et al.  Entanglement is not necessary for perfect discrimination between unitary operations. , 2007, Physical review letters.

[7]  Stefano Pirandola,et al.  Quantum Reading of a Classical Digital Memory , 2011, Physical review letters.

[8]  A. Acín Statistical distinguishability between unitary operations. , 2001, Physical review letters.

[9]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[10]  S. Lloyd,et al.  Quantum illumination with Gaussian states. , 2008, Physical review letters.

[11]  Samuel L. Braunstein,et al.  Quantum reading under a local energy constraint , 2012, 1204.3448.

[12]  Seth Lloyd,et al.  Quantum illumination versus coherent-state target detection , 2009, 0902.0986.

[13]  Samuel L. Braunstein,et al.  Quantum reading capacity , 2011, 1107.3500.

[14]  Michele Dall'Arno,et al.  Tradeoff between energy and error in the discrimination of quantum-optical devices , 2011, 1104.4228.

[15]  Barry C. Sanders,et al.  Operational formulation of homodyne detection , 2004 .

[16]  Massimiliano F. Sacchi,et al.  Entanglement can enhance the distinguishability of entanglement-breaking channels , 2005 .

[17]  Alberto Porzio,et al.  Quantum tomography as a tool for the characterization of optical devices , 2001, quant-ph/0110110.

[18]  W. Vogel,et al.  Quantum Optics: VOGEL: QUANTUM OPTICS O-BK , 2006 .