Semantic Systems. The Power of AI and Knowledge Graphs: 15th International Conference, SEMANTiCS 2019, Karlsruhe, Germany, September 9–12, 2019, Proceedings

Tourism is one of the most important economic sectors in Austria. Given the high internationality degree of Austrian visitors, the websites of regional tourism organizations (RTOs) are an essential source of information. A state-of-the-art tourism website should include semantic markup for touristic topics so that search engines and other intelligent software applications can access and understand the presented data. This paper empirically studies the usage of Semantic Web formats, ontologies and topics relevant for tourism on the websites of all 137 Austrian RTOs. Results show that 59% of the RTOs use semantic markup. Most regions adhere to the recommendations of leading search engines utilizing ontologies such as Schema.org and the formats Microdata and JSON-LD. While most semantic markup incorporates basic information (e.g. navigation, addresses, corporate data), only few Austrian RTOs annotate touristic relevant topics that would contribute to unlock the full potential of the Semantic Web such as regional events, accommodations, blog posts, images or social media.

[1]  Olaf Hartig,et al.  Foundations of an Alternative Approach to Reification in RDF , 2014, ArXiv.

[2]  Sebastian Rudolph,et al.  EP-SPARQL: a unified language for event processing and stream reasoning , 2011, WWW.

[3]  Martin Gaedke,et al.  Silk - A Link Discovery Framework for the Web of Data , 2009, LDOW.

[4]  Josef van Genabith,et al.  USAAR at SemEval-2016 Task 13: Hyponym Endocentricity , 2016, *SEMEVAL.

[5]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[6]  Markus Krötzsch,et al.  Reifying RDF: What Works Well With Wikidata? , 2015, SSWS@ISWC.

[7]  Laura M. Haas,et al.  Explaining Data Integration , 2018, IEEE Data Eng. Bull..

[8]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[9]  Anette Hulth,et al.  Enhancing Linguistically Oriented Automatic Keyword Extraction , 2004, NAACL.

[10]  Baobao Chang,et al.  A novel topic model for automatic term extraction , 2013, SIGIR.

[11]  Jie Zhang,et al.  Semplore: An IR Approach to Scalable Hybrid Query of Semantic Web Data , 2007, ISWC/ASWC.

[12]  Paul Buitelaar,et al.  A supervised approach to taxonomy extraction using word embeddings , 2018, LREC.

[13]  Jun Zhao,et al.  A Joint Model for Question Answering over Multiple Knowledge Bases , 2016, AAAI.

[14]  Seppo Törmä,et al.  INSTANS: High-Performance Event Processing with Standard RDF and SPARQL , 2012, SEMWEB.

[15]  Alasdair J. G. Gray,et al.  Enabling Ontology-Based Access to Streaming Data Sources , 2010, SEMWEB.

[16]  Daniel Jurafsky,et al.  Learning Syntactic Patterns for Automatic Hypernym Discovery , 2004, NIPS.

[17]  Alun D. Preece,et al.  FlexiTerm: a flexible term recognition method , 2013, J. Biomed. Semant..

[18]  Julio Gonzalo,et al.  Corpus-based terminology extraction applied to information access , 2001 .

[19]  Maria-Esther Vidal,et al.  Evaluation of metadata representations in RDF stores , 2019, Semantic Web.

[20]  Óscar Corcho,et al.  Towards a Unified Language for RDF Stream Query Processing , 2015, ESWC.

[21]  Óscar Corcho,et al.  RSP-QL Semantics: A Unifying Query Model to Explain Heterogeneity of RDF Stream Processing Systems , 2014, Int. J. Semantic Web Inf. Syst..

[22]  Roberto De Virgilio,et al.  Distributed Keyword Search over RDF via MapReduce , 2014, ESWC.

[23]  Haofen Wang,et al.  Semplore: A scalable IR approach to search the Web of Data , 2009, J. Web Semant..

[24]  Olaf Hartig,et al.  Foundations of RDF⋆ and SPARQL⋆ (An Alternative Approach to Statement-Level Metadata in RDF) , 2017, AMW.

[25]  Jie Gao,et al.  JATE 2.0: Java Automatic Term Extraction with Apache Solr , 2016, LREC.

[26]  Marcelo Arenas,et al.  Semantics and Complexity of SPARQL , 2006, International Semantic Web Conference.

[27]  Daniele Braga,et al.  Querying RDF streams with C-SPARQL , 2010, SGMD.

[28]  Sören Auer,et al.  AGDISTIS - Graph-Based Disambiguation of Named Entities Using Linked Data , 2014, International Semantic Web Conference.

[29]  Danh Le Phuoc,et al.  A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data , 2011, SEMWEB.

[30]  Stefano Faralli,et al.  TAXI at SemEval-2016 Task 13: a Taxonomy Induction Method based on Lexico-Syntactic Patterns, Substrings and Focused Crawling , 2016, *SEMEVAL.

[31]  Amit P. Sheth,et al.  Don't like RDF reification?: making statements about statements using singleton property , 2014, WWW.