Hom Complexes of Set Systems

A set system is a pair $\mathcal{S} = (V(\mathcal{S}),\Delta(\mathcal{S}))$, where $\Delta(\mathcal{S})$ is a family of subsets of the set $V(\mathcal{S})$. We refer to the members of $\Delta(\mathcal{S})$ as the stable sets of $\mathcal{S}$. A homomorphism between two set systems $\mathcal{S}$ and $\mathcal{T}$ is a map $f : V(\mathcal{S}) \rightarrow V(\mathcal{T})$ such that the preimage under $f$ of every stable set of $\mathcal{T}$ is a stable set of $\mathcal{S}$. Inspired by a recent generalization due to Engstrom of Lovasz's Hom complex construction, the author associates a cell complex $\mathrm{Hom}(\mathcal{S},\mathcal{T})$ to any two finite set systems $\mathcal{S}$ and $\mathcal{T}$. The main goal of the paper is to examine basic topological and homological properties of this cell complex for various pairs of set systems.

[1]  E. Babson,et al.  Complexes of graph homomorphisms , 2003, math/0310056.

[2]  D. Quillen,et al.  Homotopy properties of the poset of nontrivial p-subgroups of a group , 1978 .

[3]  A. Björner Topological methods , 1996 .

[4]  P. Csorba,et al.  On the Simple ℤ2-homotopy Types of Graph Complexes and Their Simple ℤ2-universality , 2008, Canadian Mathematical Bulletin.

[5]  R. Ho Algebraic Topology , 2022 .

[6]  Higher connectivity of graph coloring complexes , 2004, math/0410335.

[7]  Alexander Engstrom Cohomological Ramsey Theory , 2010, 1002.4074.

[8]  Patricia Hersh On optimizing discrete Morse functions , 2005, Adv. Appl. Math..

[9]  Dmitry N. Kozlov Simple homotopy types of Hom-complexes, neighborhood complexes, Lovász complexes, and atom crosscut complexes , 2006 .

[10]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[11]  Dmitry N. Kozlov,et al.  Combinatorial Algebraic Topology , 2007, Algorithms and computation in mathematics.

[12]  Volkmar Welker,et al.  The Homology of "k-Equal" Manifolds and Related Partition Lattices , 1995 .

[13]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[14]  R. Forman Morse Theory for Cell Complexes , 1998 .

[15]  J. Jonsson Simplicial complexes of graphs , 2007 .

[16]  R. Stanley Combinatorics and commutative algebra , 1983 .

[17]  Alexander Engström,et al.  Set Partition Complexes , 2008, Discret. Comput. Geom..

[18]  Dmitry N. Kozlov,et al.  Proof of the Lovász conjecture , 2004 .

[19]  Graph colorings, spaces of edges and spaces of circuits☆ , 2006, math/0606763.

[20]  Gerhard J. Woeginger,et al.  Graph colorings , 2005, Theor. Comput. Sci..