Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems

We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown.

[1]  A. Giorgilli,et al.  Some remarks on the problem of ergodicity of the Standard Map , 2000 .

[2]  Primack,et al.  Quantization of the three-dimensional Sinai billiard. , 1995, Physical Review Letters.

[3]  Jack J. Dongarra,et al.  Automatically Tuned Linear Algebra Software , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[4]  T. Prosen,et al.  Energy level statistics and localization in sparsed banded random matrix ensemble , 1993 .

[5]  Steiner,et al.  Spectral statistics in the quantized cardioid billiard. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Tomaž Prosen,et al.  Quantization of a generic chaotic 3D billiard with smooth boundary. I. Energy level statistics , 1996, chao-dyn/9611015.

[7]  M. Sieber,et al.  Quantum chaos in the hyperbola billiard , 1990 .

[8]  Eigenvalues of the Laplacian for Bianchi Groups , 1999 .

[9]  R. Riddell Boundary-distribution solution of the Helmholtz equation for a region with corners , 1979 .

[10]  M. Berry,et al.  Quantization of linear maps on a torus-fresnel diffraction by a periodic grating , 1980 .

[11]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Paul A. Martin,et al.  Acoustic scattering and radiation problems, and the null-field method , 1982 .

[13]  R. E. Kleinman,et al.  Boundary Integral Equations for the Three-Dimensional Helmholtz Equation , 1974 .

[14]  M. Berry,et al.  Diabolical points in the spectra of triangles , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  M. Esposti,et al.  Egorov theorems and equidistribution of eigenfunctions for the quantized sawtooth and Baker maps , 1998 .

[16]  F. Haake Quantum signatures of chaos , 1991 .

[17]  F. Steiner,et al.  Quantum Chaos and Quantum Ergodicity , 2001 .

[18]  NUMERICAL SOLUTION OF THE HELMHOLTZ EQUATION FOR TWO DIMENSIONAL POLYGONAL REGIONS , 1979 .

[19]  Uniform approximation for diffractive contributions to the trace formula in billiard systems , 1996, chao-dyn/9610006.

[20]  Vergini,et al.  Calculation by scaling of highly excited states of billiards. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  T. Harayama,et al.  Zeta function derived from the boundary element method , 1992 .

[22]  Carlos Villegas-Blas,et al.  Second Summer School in Analysis and Mathematical Physics : topics in analysis : harmonic, complex, nonlinear and quantization : Second Summer School in Analysis and Mathematical Physics, Cuernavaca Morelos, Mexico, June 12-22, 2000 , 2001 .

[23]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[24]  Quantization of a class of piecewise affine transformations on the torus , 1995, hep-th/9502035.

[25]  Biswas,et al.  Quantum description of a pseudointegrable system: The pi /3-rhombus billiard. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[26]  A. Bouzouina,et al.  Equipartition of the eigenfunctions of quantized ergodic maps on the torus , 1996 .

[27]  The quantized Baker's transformation , 1989 .

[28]  S. Isola,et al.  Classical limit of the quantized hyperbolic toral automorphisms , 1995 .

[29]  M. Esposti Quantization of the orientation preserving automorphisms of the torus , 1993 .

[30]  LETTER TO THE EDITOR: Spectral statistics for quantized skew translations on the torus , 1999, math-ph/9906026.

[31]  T. Prosen,et al.  Quantization of generic chaotic 3D billiard with smooth boundary II: structure of high-lying eigenstates , 1996, chao-dyn/9611016.

[32]  Quantization of Sinai's billiard—A scattering approach , 1995, chao-dyn/9502019.

[33]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[34]  P. A. Boasman Semiclassical accuracy for billiards , 1994 .

[35]  R. Aurich,et al.  Statistical properties of highly excited quantum eigenstates of a strongly chaotic system , 1993 .

[36]  E. Bogomolny Semiclassical quantization of multidimensional systems , 1992 .

[37]  J. Keating The cat maps: quantum mechanics and classical motion , 1991 .

[38]  A. Voros,et al.  Normal modes of billiards portrayed in the stellar (or nodal) representation , 1995 .

[39]  Value distribution for eigenfunctions of desymmetrized quantum maps , 2001, math-ph/0101008.

[40]  P. Duarte Plenty of elliptic islands for the standard family of area preserving maps , 1994 .

[41]  T. Prosen,et al.  Numerical demonstration of the Berry-Robnik level spacing distribution , 1994 .

[42]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[43]  M. Saraceno,et al.  QUANTITATIVE STUDY OF SCARS IN THE BOUNDARY SECTION OF THE STADIUM BILLIARD , 1997, chao-dyn/9706024.

[44]  H. R. Dullin,et al.  Symbolic Dynamics and Periodic Orbits for the Cardioid Billiard , 1995 .

[45]  F. Mezzadri,et al.  Pseudo-symmetries of Anosov maps and spectral statistics , 2000 .

[46]  M. Dematos,et al.  Quantization of Anosov Maps , 1995 .

[47]  R. D. Ciskowski,et al.  Boundary element methods in acoustics , 1991 .

[48]  J. Keating,et al.  Semiclassical asymptotics of perturbed cat maps , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[49]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[50]  V. G. Sigillito,et al.  Eigenvalues of the Laplacian in Two Dimensions , 1984 .

[51]  J. Strelcyn,et al.  The coexistence problem" for conservative dynamical systems: a review , 1991 .

[52]  T. Harayama,et al.  Interior Dirichlet eigenvalue problem, exterior Neumann scattering problem, and boundary element method for quantum billiards , 1997 .

[53]  Index and dynamics of quantized contact transformations , 2000, math-ph/0002007.

[54]  J. Keating Asymptotic properties of the periodic orbits of the cat maps , 1991 .

[55]  The boundary integral method for magnetic billiards. , 1999, chao-dyn/9912022.

[56]  Bambi Hu,et al.  Is there relevance of chaos in numerical solutions of quantum billiards , 1995, chao-dyn/9804039.

[57]  Eric J. Heller,et al.  Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .

[58]  U. Smilansky,et al.  A scattering approach to the quantization of billiards- The inside-outside duality. , 1993, Chaos.

[59]  J. Eckmann,et al.  Zeta functions with Dirichlet and Neumann boundary conditions for exterior domains , 1996, chao-dyn/9602005.

[60]  Stephen C. Creagh,et al.  Non-generic spectral statistics in the quantized stadium billiard , 1993 .

[61]  Marko Robnik,et al.  Quantising a generic family of billiards with analytic boundaries , 1984 .

[62]  M. Sieber Billiard systems in three dimensions: the boundary integral equation and the trace formula , 1997, chao-dyn/9711001.

[63]  J. Marklof,et al.  Trace formulae for three-dimensional hyperbolic lattices and application to a strongly chaotic tetrahedral billiard , 1996 .

[64]  C. Pisani Exploring Periodic Orbit Expansions and Renormalisation with the Quantum Triangular Billiard , 1996, chao-dyn/9607005.

[65]  Baowen Li,et al.  Statistical properties of high-lying chaotic eigenstates , 1994, chao-dyn/9501003.

[66]  Chaotic eigenfunctions in momentum space , 1999, chao-dyn/9905015.

[67]  M. Saraceno Classical structures in the quantized baker transformation , 1990 .

[68]  B. Eckhardt Exact eigenfunctions for a quantised map , 1986 .

[69]  R. Schubert,et al.  Autocorrelation function of eigenstates in chaotic and mixed systems , 2001, nlin/0106018.

[70]  Eberhard R. Hilf,et al.  Spectra of Finite Systems , 1980 .

[71]  Boundary integral method for stationary states of two-dimensional quantum systems , 1997, physics/9702022.

[72]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[73]  Efficient diagonalization of kicked quantum systems , 1997, cond-mat/9712209.

[74]  C. Porter,et al.  Fluctuations of Nuclear Reaction Widths , 1956 .

[75]  F. Mezzadri Boundary conditions for torus maps and spectral statistics , 1999 .