Smooth fitting of geophysical data using continuous global surfaces

Continuous global surfaces (CGS) are a general framework for interpolation and smoothing of geophysical data. The first of two smoothing techniques we consider in this paper is generalized cross validation (GCV), which is a bootstrap measure of the predictive error of a surface that requires no prior knowledge of noise levels. The second smoothing technique is to define the CGS surface with fewer centers than data points, and compute the fit by least squares (LSQR); the noise levels are implicitly estimated by the number and placement of the centers relative to the data points. We show that both smoothing methods can be implemented using extensions to the existing fast framework for interpolation, so that it is now possible to construct realistic smooth fits to the very large data sets typically collected in geophysics.Thin‐plate spline and kriging surfaces with GCV smoothing appear to produce realistic fits to noisy radiometric data. The resulting surfaces are similar, yet the thin‐plate spline required ...

[1]  Stephen Billings,et al.  Interpolation of geophysical data using continuous global surfaces , 2002 .

[2]  Richard K. Beatson,et al.  Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods , 2000, SIAM J. Sci. Comput..

[3]  Ward Cheney,et al.  A course in approximation theory , 1999 .

[4]  Brian Minty,et al.  Improved NASVD smoothing of airborne gamma-ray spectra , 1998 .

[5]  Richard K. Beatson,et al.  Fast Evaluation of Radial Basis Functions: Moment-Based Methods , 1998, SIAM J. Sci. Comput..

[6]  Thomas Strohmer,et al.  Smooth approximation of potential fields from noisy scattered data , 1998 .

[7]  R. Grasty,et al.  Reducing Statistical Noise in Airborne Gamma-Ray Data: through Spectral Component Analysis , 1997 .

[8]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[9]  R. L. Grasty,et al.  A GUIDE TO THE TECHNICAL SPECIFICATIONS FOR AIRBORNE GAMMA−RAY SURVEYS , 1995 .

[10]  M. Hutchinson,et al.  Splines — more than just a smooth interpolator , 1994 .

[11]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[12]  H. Mitásová,et al.  Interpolation by regularized spline with tension: I. Theory and implementation , 1993 .

[13]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[14]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[15]  Lindrith Cordell,et al.  A scattered equivalent-source method for interpolation and gridding of potential-field data in three dimensions , 1992 .

[16]  Glenn Stone,et al.  Computation of Thin-Plate Splines , 1991, SIAM J. Sci. Comput..

[17]  G. Wahba Spline Models for Observational Data , 1990 .

[18]  Dale L. Zimmerman,et al.  Computationally efficient restricted maximum likelihood estimation of generalized covariance functions , 1989 .

[19]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[20]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[21]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[22]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[23]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[24]  G. Golub Matrix computations , 1983 .

[25]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[26]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[27]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[28]  P. Whittle,et al.  Optimization under Constraints , 1975 .

[29]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[30]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[31]  Interpolation by Regularized Spline with Tension � , 2022 .