Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory
暂无分享,去创建一个
[1] A. Liapounoff,et al. Problème général de la stabilité du mouvement , 1907 .
[2] O. Perron,et al. Die Stabilitätsfrage bei Differentialgleichungen , 1930 .
[3] J. Gillis,et al. Probability and Related Topics in Physical Sciences , 1960 .
[4] L. Cesari,et al. Asymptotic Behaviour and Stability Problems in Ordinary Differential Equations , 1960 .
[5] Richard A. Silverman,et al. An introduction to the theory of linear spaces , 1963 .
[6] Lamberto Cesari,et al. Asymptotic Behavior and Stability Problems in Ordinary Differential Equations , 1963 .
[7] S. Sternberg. Lectures on Differential Geometry , 1964 .
[8] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[9] P. Walters. Ergodic theory: Introductory lectures , 1975 .
[10] L. Galgani,et al. Numerical computations on a stochastic parameter related to the Kolmogorov entropy , 1976 .
[11] G. Benettin,et al. Kolmogorov Entropy and Numerical Experiments , 1976 .
[12] Y. Pesin. CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .
[13] G. Benettin,et al. Numerical experiments on the free motion of a point mass moving in a plane convex region: Stochastic transition and entropy , 1978 .
[14] George Contopoulos,et al. On the number of isolating integrals in Hamiltonian systems , 1978 .
[15] G. Benettin,et al. Kolmogorov entropy of a dynamical system with an increasing number of degrees of freedom , 1979 .
[16] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .