Fluid flow and convective heat transfer in flat microchannels

Abstract This study investigates the design, construction and instrumentation of an experimental microchannel, with a rectangular cross-section and large aspect ratio, that allows characterization of the flow and convective heat transfer under well defined and precise conditions and makes it possible to vary the hydraulic diameter of the microchannel. The flow friction coefficient is estimated by direct pressure drop measurements inside the microchannel in a zone where the flow is fully developed. Since the wall thermal conditions inside the microchannel can not be measured directly, their estimation requires temperature measurements in the wall thickness and an inverse heat conduction method. The thermal and hydrodynamic results obtained by varying the hydraulic diameter between 1 mm and 100 μm do not deviate from the theory or empirical correlations for large-scale channels. These results let us confirm that for smooth walls the continuum mechanics laws for convection and fluid mechanics remain valid in microchannels of hydraulic diameter greater than or equal to 100 μm.

[1]  Ian Papautsky,et al.  Laminar fluid behavior in microchannels using micropolar fluid theory , 1999 .

[2]  R. Shah Laminar Flow Forced convection in ducts , 1978 .

[3]  Said I. Abdel-Khalik,et al.  An experimental investigation of single-phase forced convection in microchannels , 1998 .

[4]  S. Garimella,et al.  Investigation of heat transfer in rectangular microchannels , 2005 .

[5]  F. Dittus,et al.  Heat transfer in automobile radiators of the tubular type , 1930 .

[6]  Dongqing Li,et al.  Heat Transfer and Fluid Flow in Microchannels , 1996, Microelectromechanical Systems (MEMS).

[7]  V. Gnielinski New equations for heat and mass transfer in turbulent pipe and channel flow , 1976 .

[8]  Huiying Wu,et al.  An experimental study of convective heat transfer in silicon microchannels with different surface conditions , 2003 .

[9]  Albert Mosyak,et al.  Fluid flow in micro-channels , 2005 .

[10]  X. Peng,et al.  Experimental investigation on liquid forced-convection heat transfer through microchannels☆ , 1994 .

[11]  I. Tani,et al.  Boundary-Layer Transition , 1969 .

[12]  J. Franc,et al.  Mesure des coefficients de transfert thermique par convection forcée en mini-canaux , 2000 .

[13]  Shigefumi Nishio,et al.  The experimental research on microtube heat transfer and fluid flow of distilled water , 2004 .

[14]  I. Mudawar,et al.  Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink , 2002 .

[15]  S. Wereley,et al.  PIV measurements of a microchannel flow , 1999 .

[16]  R. Shah,et al.  Handbook of single-phase convective heat transfer , 1987 .

[17]  B. W. Webb,et al.  Characterization of frictional pressure drop for liquid flows through microchannels , 2002 .

[18]  M. M. Rahman Measurements of heat transfer in microchannel heat sinks , 2000 .

[19]  J. Welty,et al.  Pressure Drop Measurements in a Microchannel , 1998, Micro-Electro-Mechanical Systems (MEMS).

[20]  X. Peng,et al.  Forced convection and flow boiling heat transfer for liquid flowing through microchannels , 1993 .

[21]  Brahim Bourouga,et al.  Les aspects théoriques régissant l'instrumentation d'un capteur thermique pariétal à faible inertie , 2000 .

[22]  J. Zemel,et al.  Liquid transport in micron and submicron channels , 1990 .

[23]  Dongqing Li,et al.  Heat transfer for water flow in trapezoidal silicon microchannels , 2000 .

[24]  Charles L. Merkle,et al.  An Analytical Study of the Effects of Surface Roughness on Boundary-Layer Transition , 1974 .

[25]  Stéphane Le Person,et al.  Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels , 2002 .

[26]  Xiaoning Jiang,et al.  Micro-fluid Flow In Microchannel , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[27]  Said I. Abdel-Khalik,et al.  A microfluidic experimental platform with internal pressure measurements , 2005 .

[28]  L J Kricka,et al.  Manipulation and flow of biological fluids in straight channels micromachined in silicon. , 1994, Clinical chemistry.

[29]  A. Shekarriz,et al.  Forced convection heat transfer in parallel channel array microchannel heat exchanger , 1996 .

[30]  M RahmanM,et al.  Experimental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate. , 1993 .

[31]  G. Peterson,et al.  Experimental investigation of heat transfer in flat plates with rectangular microchannels , 1995 .

[32]  Roland Baviere,et al.  Mesures locales de pertes de charge dans des microcanaux à l’aide de transducteurs micro-usinés , 2006 .

[33]  Zeng-Yuan Guo,et al.  Size effect on microscale single-phase flow and heat transfer , 2002 .

[34]  M. Sabry Scale effects on fluid flow and heat transfer in microchannels , 2000 .

[35]  X. Peng,et al.  FRICTIONAL FLOW CHARACTERISTICS OF WATER FLOWING THROUGH RECTANGULAR MICROCHANNELS , 1994 .

[36]  R. S. Dhariwal,et al.  Experimental and Numerical Investigation Into the Flow Characteristics of Channels Etched in 〈100〉 Silicon , 1998 .

[37]  Dongqing Li,et al.  Flow characteristics of water in microtubes , 1999 .

[38]  Shripad P. Mahulikar,et al.  Experimental verification of the role of Brinkman number in microchannels using local parameters , 2000 .