Cylindrical static and kinetic binary space partitions

We describe the first known algorithm for efficiently maintaining a Binary Space Partition (BSP) for n continuously moving segments in the plane, whose interiors remain disjoint throughout the motion. Under reasonable assumptions on the motion, we show that the total number of times this BSP changes is O.n 2 / ,a nd that we can update the BSP in O.logn/ expected time per change. Throughout the motion, the expected size of the BSP is O.n logn/. We also consider the problem of constructing a BSP for n static triangles with pairwise-disjoint interiors in R 3 . We present a randomized algorithm that constructs a BSP of size O.n 2 / in O.n 2 log 2 n/ expected time. We also describe a deterministic algorithm that constructs a BSP of size O..nCk/log 2 n/ and height O.logn/ in O..nCk/log 3 n/ time, where k is the number of intersection points between the edges of the projections of the triangles onto the xy-plane. This is the first known algorithm that constructs a BSP of O.logn/ height for disjoint triangles inR 3 . © 2000 Elsevier Science B.V. All rights reserved.

[1]  A. T. Campbell Modeling global diffuse illumination for image synthesis , 1992 .

[2]  R. Seidel Backwards Analysis of Randomized Geometric Algorithms , 1993 .

[3]  Zbigniew Michalewicz,et al.  Near-Optimal Construction of Partitioning Trees by Evolutionary Techniques , 1995 .

[4]  Alade O. Tokuta Motion planning using binary space partitioning , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[5]  T. M. Murali,et al.  Binary space partitions for fat rectangles , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[6]  Leonidas J. Guibas,et al.  Data structures for mobile data , 1997, SODA '97.

[7]  John M. Airey,et al.  Increasing update rates in the building walkthrough system with automatic model-space subdivision and potentially visible set calculations , 1990 .

[8]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[9]  Subhash Suri,et al.  Surface approximation and geometric partitions , 1994, SODA '94.

[10]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[11]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[12]  Steven K. Feiner,et al.  Near real-time shadow generation using BSP trees , 1989, SIGGRAPH '89.

[13]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[14]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[15]  Richard Pollack,et al.  Discrete and Computational Geometry: Papers from the DIMACS Special Year , 1991, Discrete and Computational Geometry.

[16]  Seth Teller,et al.  Visibility Computations in Densely Occluded Polyhedral Environments , 1992 .

[17]  David Eppstein,et al.  Horizon Theorems for Lines and Polygons , 1990, Discrete and Computational Geometry.

[18]  Mark de Berg,et al.  Linear Size Binary Space Partitions for Fat Objects , 1995, ESA.

[19]  Bruce F. Naylor SCULPT: an interactive solid modeling tool , 1990 .

[20]  R. Schmacher,et al.  Study for Applying Computer-Generated Images to Visual Simulation: (510842009-001) , 1969 .

[21]  Joseph S. B. Mitchell,et al.  Approximation algorithms for geometric tour and network design problems (extended abstract) , 1995, SCG '95.

[22]  John Amanatides,et al.  Merging BSP trees yields polyhedral set operations , 1990, SIGGRAPH.

[23]  Leonidas J. Guibas,et al.  The power of geometric duality , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[24]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[25]  Leonidas J. Guibas,et al.  Data Structures for Mobile Data , 1997, J. Algorithms.

[26]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[27]  Leonidas J. Guibas,et al.  Kinetic binary space partitions for intersecting segments and disjoint triangles , 1998, SODA '98.

[28]  T. M. Murali,et al.  Consistent solid and boundary representations from arbitrary polygonal data , 1997, SI3D.

[29]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[30]  Steven K. Feiner,et al.  Fast object-precision shadow generation for area light sources using BSP trees , 1992, I3D '92.

[31]  Bruce F. Naylor,et al.  Set operations on polyhedra using binary space partitioning trees , 1987, SIGGRAPH.

[32]  Bruce F. Naylor,et al.  Interactive solid geometry via partitioning trees , 1992 .

[33]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[34]  Leonidas J. Guibas,et al.  Kinetic data structures: a state of the art report , 1998 .

[35]  F. Frances Yao,et al.  Efficient binary space partitions for hidden-surface removal and solid modeling , 1990, Discret. Comput. Geom..

[36]  Enric Torres,et al.  Optimization of the Binary Space Partition Algorithm (BSP) for the Visualization of Dynamic Scenes , 1990, Eurographics.

[37]  P. Agarwal,et al.  Kinetic binary space partitions for triangles , 1998 .

[38]  F. Frances Yao,et al.  Optimal binary space partitions for orthogonal objects , 1990, SODA '90.