Validation of stratospheric and mesospheric ozone observed by SMILES from International Space Station

Abstract. We observed ozone (O3) in the vertical region between 250 and 0.0005 hPa (~ 12–96 km) using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the Japanese Experiment Module (JEM) of the International Space Station (ISS) between 12 October 2009 and 21 April 2010. The new 4 K superconducting heterodyne receiver technology of SMILES allowed us to obtain a one order of magnitude better signal-to-noise ratio for the O3 line observation compared to past spaceborne microwave instruments. The non-sun-synchronous orbit of the ISS allowed us to observe O3 at various local times. We assessed the quality of the vertical profiles of O3 in the 100–0.001 hPa (~ 16–90 km) region for the SMILES NICT Level 2 product version 2.1.5. The evaluation is based on four components: error analysis; internal comparisons of observations targeting three different instrumental setups for the same O3 625.371 GHz transition; internal comparisons of two different retrieval algorithms; and external comparisons for various local times with ozonesonde, satellite and balloon observations (ENVISAT/MIPAS, SCISAT/ACE-FTS, Odin/OSIRIS, Odin/SMR, Aura/MLS, TELIS). SMILES O3 data have an estimated absolute accuracy of better than 0.3 ppmv (3%) with a vertical resolution of 3–4 km over the 60 to 8 hPa range. The random error for a single measurement is better than the estimated systematic error, being less than 1, 2, and 7%, in the 40–1, 80–0.1, and 100–0.004 hPa pressure regions, respectively. SMILES O3 abundance was 10–20% lower than all other satellite measurements at 8–0.1 hPa due to an error arising from uncertainties of the tangent point information and the gain calibration for the intensity of the spectrum. SMILES O3 from observation frequency Band-B had better accuracy than that from Band-A. A two month period is required to accumulate measurements covering 24 h in local time of O3 profile. However such a dataset can also contain variation due to dynamical, seasonal, and latitudinal effects.

[1]  Jian Xu,et al.  A sensitivity study for far infrared balloon-borne limb emission sounding of stratospheric trace gases , 2013 .

[2]  Satoshi Ochiai,et al.  Receiver Performance of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[3]  D. Murtagh,et al.  Strato-mesospheric ClO observations by SMILES: error analysis and diurnal variation , 2012 .

[4]  P. Bernath,et al.  Validation of MIPAS IMK/IAA ozone profiles , 2012 .

[5]  Gerald Wetzel,et al.  Diurnal variations of reactive chlorine and nitrogen oxides observed by MIPAS-B inside the January 2010 Arctic vortex , 2012 .

[6]  Satoshi Ochiai,et al.  In-Orbit Measurement of the AOS (Acousto-Optical Spectrometer) Response Using Frequency Comb Signals , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  Satoshi Ochiai,et al.  The Level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) , 2011 .

[8]  P. Bernath,et al.  Validation of the ACE-FTS Version 3.0 Dataset Against Other Satellite Instrument Datasets , 2011 .

[9]  E. Fetzer,et al.  Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements , 2011 .

[10]  Chikako Takahashi,et al.  Overview and early results of the Superconducting Submillimeter‐Wave Limb‐Emission Sounder (SMILES) , 2010 .

[11]  Arno de Lange,et al.  Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder , 2010 .

[12]  Alyn Lambert,et al.  MIPAS reduced spectral resolution UTLS-1 mode measurements of temperature, O 3 , HNO 3 , N 2 O, H 2 O and relative humidity over ice: retrievals and comparison to MLS , 2009 .

[13]  M. Kiefer,et al.  Retrieval of temperature, H 2 O, O 3 , HNO 3 , CH 4 , N 2 O, ClONO 2 and ClO from MIPAS reduced resolution nominal mode limb emission measurements , 2009 .

[14]  Ricardo Todling,et al.  The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 , 2008 .

[15]  Brian J. Drouin,et al.  Validation of Aura Microwave Limb Sounder stratospheric ozone measurements , 2008 .

[16]  Jean-Baptiste Renard,et al.  Technical Note: Validation of Odin/SMR limb observations of ozone, comparisons with OSIRIS, POAM III, ground-based and balloon-borne instruments , 2008 .

[17]  Chris Roth,et al.  Limb scatter ozone retrieval from 10 to 60 km using a multiplicative algebraic reconstruction technique , 2008 .

[18]  Lance E. Christensen,et al.  Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere , 2008 .

[19]  B. T. Marshall,et al.  Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE) , 2008 .

[20]  Gert König-Langlo,et al.  Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements , 2007 .

[21]  D. Murtagh,et al.  Intercomparison of Odin/SMR ozone measurements with MIPAS and balloon sonde data , 2007 .

[22]  A. Thompson,et al.  Assessment of the performance of ECC‐ozonesondes under quasi‐flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE) , 2007 .

[23]  Costas A. Varotsos,et al.  Geophysical validation of MIPAS-ENVISAT operational ozone data , 2007 .

[24]  Gerald Wetzel,et al.  Bias determination and precision validation of ozone profiles from MIPAS-Envisat retrieved with the IMK-IAA processor , 2007 .

[25]  D. Wardle,et al.  The ACE-MAESTRO instrument on SCISAT: description, performance, and preliminary results. , 2007, Applied optics.

[26]  T. Clarmann,et al.  MIPAS: an instrument for atmospheric and climate research , 2007 .

[27]  T. Clarmann Validation of remotely sensed profiles of atmospheric state variables: strategies and terminology , 2006 .

[28]  C. Piccolo,et al.  Odin/SMR Limb Observations of Trace Gases in the Polar Lower Stratosphere during 2004-2005 , 2006 .

[29]  William G. Read,et al.  Retrieval algorithms for the EOS Microwave limb sounder (MLS) , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Reinhard Beer,et al.  Overview of the EOS aura mission , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[33]  P. Bernath,et al.  Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer. , 2005, Applied optics.

[34]  Michael Olberg,et al.  Odin/SMR limb observations of stratospheric trace gases: Level 2 processing of ClO, N2O, HNO3, and O3 , 2005 .

[35]  Chikako Takahashi,et al.  Intercomparison of general purpose clear sky atmospheric radiative transfer models for the millimeter/submillimeter spectral range , 2005 .

[36]  E. J. Llewellyn,et al.  The OSIRIS instrument on the Odin spacecraft , 2004 .

[37]  Peter F. Bernath,et al.  Atmospheric chemistry experiment (ACE): mission overview , 2004, SPIE Optics + Photonics.

[38]  C. Boulet,et al.  Theoretical calculation of the translation-rotation collision-induced absorption in N2–N2, O2–O2, and N2–O2 pairs , 2003 .

[39]  Franz Schreier,et al.  Modelling of atmospheric mid-infrared radiative transfer: the AMIL2DA algorithm intercomparison experiment , 2003 .

[40]  Toshihiro Ogawa,et al.  Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements , 2003 .

[41]  Chikako Takahashi,et al.  Stratospheric ozone isotope enrichment studied by submillimeter wave heterodyne radiometry: the observation capabilities of SMILES , 2002, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Philippe Baron,et al.  Studies for the Odin sub-millimetre radiometer: III. Performance simulations , 2002 .

[43]  D. Murtagh,et al.  An overview of the Odin atmospheric mission , 2002 .

[44]  Eugene Serabyn,et al.  Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications , 2001 .

[45]  T. Steck,et al.  Constrained profile retrieval applied to the observation mode of the michelson interferometer for passive atmospheric sounding. , 2001, Applied optics.

[46]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[47]  Robert A. Barnes,et al.  Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989 , 1995 .

[48]  C. R. Sreedharan,et al.  The 1991 WMO International ozonesonde intercomparison at Vanscoy, Canada , 1994 .

[49]  Hans J. Liebe,et al.  Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz , 1993 .

[50]  J. Milford,et al.  The Oxford-Kew ozone sonde , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[51]  Adam E. Bourassa,et al.  SASKTRAN: A spherical geometry radiative transfer code for efficient estimation of limb scattered sunlight , 2008 .

[52]  Franz Schreier,et al.  A New Efficient Line-By-Line Code for High Resolution Atmospheric Radiation Computations incl. Derivatives , 2001 .

[53]  J. Kobayashi,et al.  On Various Methods of Measuring the Vertical Distribution of Atmospheric Ozone (III): Carbon-iodine Type Chemical Ozonesonde@@@炭素-沃素方式オゾンゾンデ , 1966 .