The Selective Advantage of 1-Antitrypsin Deficiency

The S- and Z-deficiency alleles of alpha1-antitrypsin are found in more than 20% of some white populations. This high gene frequency suggests that these mutations confer a selective advantage, but the biologic mechanism of this has remained obscure. It is now well recognized that the S and Z alleles result in a conformational transition within the alpha1-antitrypsin molecule and the formation of polymers that are retained within the endoplasmic reticulum of hepatocytes. Polymers of mutant alpha1-antitrypsin can also form within the alveoli and small airways of the lung where they may drive the inflammation that underlies emphysema in individuals with alpha1-antitrypsin deficiency. This local production of polymers by mutant S and Z alpha1-antitrypsin may have also provided protection against infectious disease in the preantibiotic era by focusing and amplifying the inflammatory response to limit invasive respiratory and gastrointestinal infection. It is only since the discovery of antibiotics, the widespread adoption of smoking, and increased longevity that these protective, proinflammatory properties of alpha1-antitrypsin mutants have become detrimental to cause the emphysema and systemic inflammatory diseases associated with alpha1-antitrypsin deficiency.

[1]  F. D. de Serres,et al.  Estimated numbers and prevalence of PI*S and PI*Z alleles of α1-antitrypsin deficiency in European countries , 2006, European Respiratory Journal.

[2]  V. Grassi,et al.  Neutrophilic inflammation and IL-8 levels in induced sputum of alpha-1-antitrypsin PiMZ subjects , 2005, Thorax.

[3]  M. Zern,et al.  Factors associated with advanced liver disease in adults with alpha1-antitrypsin deficiency. , 2005, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[4]  C. Tinelli,et al.  Prevalence and phenotype of subjects carrying rare variants in the Italian registry for alpha1-antitrypsin deficiency , 2005, Journal of Medical Genetics.

[5]  B. Cooperman,et al.  Alpha 1-antitrypsin polymerization: a fluorescence correlation spectroscopic study. , 2005, Biochemistry.

[6]  D. Lomas,et al.  Polymers of Z alpha1-antitrypsin co-localize with neutrophils in emphysematous alveoli and are chemotactic in vivo. , 2005, The American journal of pathology.

[7]  J. Teckman,et al.  Quantitative isolation of α1AT mutant Z protein polymers from human and mouse livers and the effect of heat , 2005, Hepatology.

[8]  F. Callea,et al.  Differential detection of PAS‐positive inclusions formed by the Z, Siiyama, and Mmalton variants of α1‐antitrypsin , 2004, Hepatology.

[9]  Gregory P Cosgrove,et al.  Emphysema lung tissue gene expression profiling. , 2004, American journal of respiratory cell and molecular biology.

[10]  N. McElvaney,et al.  Z alpha1-antitrypsin polymerizes in the lung and acts as a neutrophil chemoattractant. , 2004, Chest.

[11]  Robert N Proctor,et al.  The global smoking epidemic: a history and status report. , 2004, Clinical lung cancer.

[12]  S. Janciauskiene,et al.  Divergent effects of α1-antitrypsin on neutrophil activation, in vitro , 2004 .

[13]  N. Martin,et al.  Protease inhibitor (Pi) locus, fertility and twinning , 1992, Human Genetics.

[14]  R. Stockley,et al.  Sputum chemotactic activity in chronic obstructive pulmonary disease: effect of α1–antitrypsin deficiency and the role of leukotriene B4 and interleukin 8 , 2002, Thorax.

[15]  D. Lomas,et al.  Polymers of alpha(1)-antitrypsin are chemotactic for human neutrophils: a new paradigm for the pathogenesis of emphysema. , 2002, American journal of respiratory cell and molecular biology.

[16]  D. Lomas,et al.  6-mer Peptide Selectively Anneals to a Pathogenic Serpin Conformation and Blocks Polymerization , 2002, The Journal of Biological Chemistry.

[17]  Y. Liu,et al.  Dissecting glycoprotein quality control in the secretory pathway. , 2001, Trends in biochemical sciences.

[18]  J. Teckman,et al.  A Naturally Occurring Nonpolymerogenic Mutant of α1-Antitrypsin Characterized by Prolonged Retention in the Endoplasmic Reticulum* , 2001, The Journal of Biological Chemistry.

[19]  I. Blanco,et al.  Alpha‐1‐antitrypsin PI phenotypes S and Z in Europe: an analysis of the published surveys , 2001, Clinical genetics.

[20]  D. Lomas,et al.  Pathogenic α1-Antitrypsin Polymers Are Formed by Reactive Loop-β-Sheet A Linkage* , 2000, The Journal of Biological Chemistry.

[21]  Farshid N. Rouhani,et al.  Lung neutrophil burden correlates with increased pro-inflammatory cytokines and decreased lung function in individuals with alpha(1)-antitrypsin deficiency , 2000, Chest.

[22]  J. Benichou,et al.  Distribution of α1-Antitrypsin alleles in patients with Bronchiectasis , 2000 .

[23]  R. Read,et al.  Inactive conformation of the serpin alpha(1)-antichymotrypsin indicates two-stage insertion of the reactive loop: implications for inhibitory function and conformational disease. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Stockley,et al.  Evidence for excessive bronchial inflammation during an acute exacerbation of chronic obstructive pulmonary disease in patients with alpha(1)-antitrypsin deficiency (PiZ). , 1999, American journal of respiratory and critical care medicine.

[25]  D. Lomas,et al.  A Kinetic Mechanism for the Polymerization of α1-Antitrypsin* , 1999, The Journal of Biological Chemistry.

[26]  D. Lomas,et al.  Heteropolymerization of S, I, and Z α1-antitrypsin and liver cirrhosis , 1999 .

[27]  D. Lomas,et al.  Lung polymers in Z alpha1-antitrypsin deficiency-related emphysema. , 1998, American journal of respiratory cell and molecular biology.

[28]  G. Turino,et al.  Atopy, Asthma, and Emphysema in Patients with Severe α -1-Antitrypysin Deficiency , 1997 .

[29]  J. Potempa,et al.  Biosynthesis of α1-Proteinase Inhibitor by Human Lung-derived Epithelial Cells* , 1997, The Journal of Biological Chemistry.

[30]  A. Blei,et al.  alpha 1-antitrypsin deficiency-associated panniculitis: resolution with intravenous alpha 1-antitrypsin administration and liver transplantation. , 1997, Transplantation.

[31]  D. Lomas,et al.  Structural explanation for the deficiency of S α1-antitrypsin , 1996, Nature Structural Biology.

[32]  J. Abrahams,et al.  Inhibitory conformation of the reactive loop of α1-antitrypsin , 1996, Nature Structural Biology.

[33]  P. Diaz,et al.  Alpha 1-antitrypsin deficiency: evaluation of bronchiectasis with CT. , 1996, Radiology.

[34]  S. Kira,et al.  Alpha 1-antitrypsin-deficient variant Siiyama (Ser53[TCC] to Phe53[TTC]) is prevalent in Japan. Status of alpha 1-antitrypsin deficiency in Japan. , 1995, American journal of respiratory and critical care medicine.

[35]  D. Lomas,et al.  Mutations Which Impede Loop/Sheet Polymerization Enhance the Secretion of Human α1-Antitrypsin Deficiency Variants (*) , 1995, The Journal of Biological Chemistry.

[36]  R. Jones,et al.  Inhibition of acrosin by serpins. A suicide substrate mechanism. , 1995, Biochemistry.

[37]  S. Eriksson,et al.  Strong link between the alpha1‐antitrypsin PiZ allele and Wegener's granulomatosis , 1994, Journal of internal medicine.

[38]  M. B. King,et al.  The proteinase-antiproteinase balance in alpha-1-proteinase inhibitor-deficient lung transplant recipients. , 1994, American journal of respiratory and critical care medicine.

[39]  D. Lomas,et al.  Alpha 1-antitrypsin Siiyama (Ser53-->Phe). Further evidence for intracellular loop-sheet polymerization. , 1993, The Journal of biological chemistry.

[40]  D. Lomas,et al.  Effect of the Z mutation on the physical and inhibitory properties of alpha 1-antitrypsin. , 1993, Biochemistry.

[41]  D. Lomas,et al.  The mechanism of Z α1-antitrypsin accumulation in the liver , 1993, Nature.

[42]  B. Burke,et al.  The pathologic spectrum of the nephropathy associated with α1-antitrypsin deficiency , 1992 .

[43]  E. Silverman,et al.  A family study of the variability of pulmonary function in α1-antitrypsin deficiency: Quantitative phenotypes , 1990 .

[44]  D. Alpers,et al.  The alpha 1-antitrypsin gene is expressed in a human intestinal epithelial cell line. , 1989, The Journal of biological chemistry.

[45]  R. Crystal,et al.  Molecular basis of alpha-1-antitrypsin deficiency. , 1988, The American journal of medicine.

[46]  R. Crystal,et al.  Z-type alpha 1-antitrypsin is less competent than M1-type alpha 1-antitrypsin as an inhibitor of neutrophil elastase. , 1987, The Journal of clinical investigation.

[47]  R. Stockley,et al.  Lung lavage fluid from patients with alpha 1-proteinase inhibitor deficiency or chronic obstructive bronchitis: anti-elastase function and cell profile. , 1987, Clinical science.

[48]  R. Crystal,et al.  Expression of the alpha-1-antitrypsin gene in mononuclear phagocytes of normal and alpha-1-antitrypsin-deficient individuals. , 1986, The Journal of clinical investigation.

[49]  J. Carlson,et al.  Risk of cirrhosis and primary liver cancer in alpha 1-antitrypsin deficiency. , 1986, The New England journal of medicine.

[50]  D. Cox,et al.  DNA restriction fragments associated with α1-antitrypsin indicate a single origin for deficiency allele PI Z , 1985, Nature.

[51]  D. Cox,et al.  The Pi Polymorphism , 1981 .

[52]  Fagerhol Mk,et al.  The Pi polymorphism: genetic, biochemical, and clinical aspects of human alpha 1-antitrypsin. , 1981 .

[53]  N. Borhani,et al.  α1‐Antitrypsin deficiency in twins and parents‐of‐twins , 1979, Clinical genetics.

[54]  C. Larsson Natural history and life expectancy in severe alpha1-antitrypsin deficiency, Pi Z. , 2009, Acta medica Scandinavica.

[55]  T Sveger,et al.  Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. , 1976, The New England journal of medicine.

[56]  M. Fagerhol,et al.  Genetics of the Pi serum types. Family studies of the inherited variants of serum alpha-1-antitrypsin. , 1969, Human heredity.

[57]  C. Laurell,et al.  The Electrophoretic α;1-Globulin Pattern of Serum in α;1-Antitrypsin Deficiency , 1963 .