Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type III

Abstract For a classical ratio-dependent predator-prey model with the generalized Holling type III functional response, it was previously investigated in [20] by Hsu and Huang for global stability of an equilibrium, and in [21] by Huang, Ruan and Song for subcritical Hopf and Bogdanov-Takens bifurcations. Here in this model when prey reproduces much faster than predator, by using geometric singular perturbation theory, we achieve much richer new dynamical phenomena than the existing ones, such as the existence of canard cycles, canard explosion and relaxation oscillations, heteroclinic and homoclinic orbits, cyclicity of slow-fast cycles, and the coexistence of the Hopf cycle and the relaxation oscillation. On global stability of the equilibrium we also provide less restricted conditions than the existing ones.

[1]  H. I. Freedman,et al.  Persistence in predator-prey systems with ratio-dependent predator influence , 1993 .

[2]  M. Krupa,et al.  Local analysis near a folded saddle-node singularity , 2010 .

[3]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[4]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[5]  Freddy Dumortier,et al.  Cyclicity of common slow–fast cycles , 2011 .

[6]  Huaiping Zhu,et al.  Canard cycles for predator–prey systems with Holling types of functional response☆ , 2013 .

[7]  F. Dumortier,et al.  Birth of canard cycles , 2009 .

[8]  P. Maesschalck,et al.  Canard cycles in the presence of slow dynamics with singularities , 2008, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  Christopher K. R. T. Jones,et al.  A Primer on the Exchange Lemma for Fast-Slow Systems , 2001 .

[10]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[11]  B. Braaksma,et al.  Singular Hopf Bifurcation in Systems with Fast and Slow Variables , 1998 .

[12]  V. Arnold Dynamical systems V. Bifurcation theory and catastrophe theory , 1994 .

[13]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[14]  Weishi Liu,et al.  Geometric Singular Perturbations for Multiple Turning Points: Invariant Manifolds and Exchange Lemmas , 2006 .

[15]  Stephen Schecter,et al.  Exchange lemmas 2: General Exchange Lemma , 2008 .

[16]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[17]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[18]  C. S. Holling,et al.  Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest , 1978 .

[19]  Shigui Ruan,et al.  Bifurcations in a predator–prey system of Leslie type with generalized Holling type III functional response☆ , 2014 .

[20]  Sze-Bi Hsu,et al.  Global Stability for a Class of Predator-Prey Systems , 1995, SIAM J. Appl. Math..

[21]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[22]  Christopher Jones,et al.  Generalized exchange lemmas and orbits heteroclinic to invariant manifolds , 2009 .

[23]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[24]  Freddy Dumortier,et al.  Canard solutions at non-generic turning points , 2005 .

[25]  John B. Collings,et al.  The effects of the functional response on the bifurcation behavior of a mite predator–prey interaction model , 1997 .

[26]  Peter Szmolyan,et al.  Extending slow manifolds near transcritical and pitchfork singularities , 2001 .

[27]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[28]  P. Maesschalck,et al.  Canard-cycle transition at a fast–fast passage through a jump point , 2014 .

[29]  G. Hek Geometric singular perturbation theory in biological practice , 2010 .

[30]  Freddy Dumortier,et al.  Multiple Canard Cycles in Generalized Liénard Equations , 2001 .

[31]  Jaume Llibre,et al.  Qualitative Theory of Planar Differential Systems , 2006 .

[32]  Stephen Schecter,et al.  Exchange lemmas 1: Deng's lemma , 2008 .