BCAT1 is a New MR Imaging-related Biomarker for Prognosis Prediction in IDH1-wildtype Glioblastoma Patients

[1]  Sohil H. Patel,et al.  T2–FLAIR Mismatch, an Imaging Biomarker for IDH and 1p/19q Status in Lower-grade Gliomas: A TCGA/TCIA Project , 2017, Clinical Cancer Research.

[2]  Henry J. Lin,et al.  In search of druggable targets for GBM amino acid metabolism , 2017, BMC Cancer.

[3]  M. Götz,et al.  Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response , 2016, Clinical Cancer Research.

[4]  S. Choi,et al.  Assessment of bevacizumab resistance increased by expression of BCAT1 in IDH1 wild-type glioblastoma: application of DSC perfusion MR imaging , 2016, Oncotarget.

[5]  Purushottam D. Dixit,et al.  Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers , 2016, Science.

[6]  Ian Law,et al.  Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. , 2016, Neuro-oncology.

[7]  R. Cristescu,et al.  Integrative analysis of diffusion-weighted MRI and genomic data to inform treatment of glioblastoma , 2016, Journal of Neuro-Oncology.

[8]  Charmaine D. Wilson,et al.  Impact of IDH1 mutation status on outcome in clinical trials for recurrent glioblastoma , 2016, Journal of Neuro-Oncology.

[9]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[10]  Henry J. Lin,et al.  Clinical aggressiveness of malignant gliomas is linked to augmented metabolism of amino acids , 2016, Journal of Neuro-Oncology.

[11]  [World Health Organization classification of tumours of the central nervous system: a summary]. , 2016, Zhonghua bing li xue za zhi = Chinese journal of pathology.

[12]  S. Heiland,et al.  IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma , 2015, Scientific Reports.

[13]  Tej D. Azad,et al.  Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities , 2015, Science Translational Medicine.

[14]  David A Gutman,et al.  Glioblastoma: imaging genomic mapping reveals sex-specific oncogenic associations of cell death. , 2015, Radiology.

[15]  P. Larson,et al.  BI-07HYPERPOLARIZED [1-13C] GLUTAMATE: A METABOLIC IMAGING BIOMARKER OF IDH1 MUTATIONAL STATUS IN GLIOMA. , 2014 .

[16]  P. Larson,et al.  Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma. , 2014, Cancer research.

[17]  P. Lambin,et al.  Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach , 2014, Nature Communications.

[18]  Scott N. Hwang,et al.  Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. , 2014, Radiology.

[19]  E. Bible Neuro-oncology: BCAT1 promotes cell proliferation in aggressive gliomas , 2013, Nature Reviews Neurology.

[20]  M. V. Heiden,et al.  BCAT1 defines gliomas by IDH status , 2013, Nature Medicine.

[21]  Rainer König,et al.  BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1 , 2013, Nature Medicine.

[22]  William D. Dunn,et al.  MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. , 2013, Radiology.

[23]  David Gutman,et al.  Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. , 2013, Radiology.

[24]  Kui Zhang,et al.  The prognostic value of MGMT promoter methylation in Glioblastoma multiforme: a meta-analysis , 2013, Familial Cancer.

[25]  Lei Wang,et al.  Over-expression of BCAT1, a c-Myc target gene, induces cell proliferation, migration and invasion in nasopharyngeal carcinoma , 2013, Molecular Cancer.

[26]  Pascal O. Zinn,et al.  A Novel Volume-Age-KPS (VAK) Glioblastoma Classification Identifies a Prognostic Cognate microRNA-Gene Signature , 2012, PloS one.

[27]  T. Cloughesy,et al.  Relationship between Tumor Enhancement, Edema, IDH1 Mutational Status, MGMT Promoter Methylation, and Survival in Glioblastoma , 2012, American Journal of Neuroradiology.

[28]  Patrick Granton,et al.  Radiomics: extracting more information from medical images using advanced feature analysis. , 2012, European journal of cancer.

[29]  Seung Hong Choi,et al.  Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging--correlation with tumor grade. , 2011, Radiology.

[30]  Ferenc A. Jolesz,et al.  Radiogenomic Mapping of Edema/Cellular Invasion MRI-Phenotypes in Glioblastoma Multiforme , 2011, PloS one.

[31]  G. Reifenberger,et al.  Patients with IDH 1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH 1-mutated glioblastomas , and IDH 1 mutation status accounts for the unfavorable prognostic effect of higher age : implications for classification of gliomas , 2010 .

[32]  O. Chinot,et al.  Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis , 2010, Acta Neuropathologica.

[33]  Susan M. Chang,et al.  Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[34]  Howard Colman,et al.  MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. , 2010, Neuro-oncology.

[35]  Ru-Fang Yeh,et al.  Glioblastoma multiforme regional genetic and cellular expression patterns: influence on anatomic and physiologic MR imaging. , 2010, Radiology.

[36]  F. Ducray,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[37]  Paul S Mischel,et al.  Relationship between gene expression and enhancement in glioblastoma multiforme: exploratory DNA microarray analysis. , 2008, Radiology.

[38]  Douglas C. Miller,et al.  Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. , 2008, Radiology.

[39]  K. Aldape,et al.  Identification of noninvasive imaging surrogates for brain tumor gene-expression modules , 2008, Proceedings of the National Academy of Sciences.

[40]  C. Weiss,et al.  Reliability and validity of MR image lung volume measurement in fetuses with congenital diaphragmatic hernia and in vitro lung models. , 2008, Radiology.

[41]  F. Schmidt Meta-Analysis , 2008 .

[42]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[43]  Paul S Tofts,et al.  Apparent diffusion coefficient histograms may predict low‐grade glioma subtype , 2007, NMR in biomedicine.

[44]  Toshihiro Kumabe,et al.  Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. , 2006, Radiology.

[45]  R M Weisskoff,et al.  Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. , 2006, AJNR. American journal of neuroradiology.

[46]  M. M. Islam,et al.  Structural Determinants for Branched-chain Aminotransferase Isozyme-specific Inhibition by the Anticonvulsant Drug Gabapentin* , 2005, Journal of Biological Chemistry.

[47]  Glyn Johnson,et al.  Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. , 2002, Radiology.

[48]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[49]  B. Rosen,et al.  Perfusion imaging with NMR contrast agents , 1990, Magnetic resonance in medicine.

[50]  J. Sneep,et al.  With a summary , 1945 .