A MOS circuit for depressing synapse and its application to contrast-invariant pattern classification and synchrony detection

A compact complementary metal-oxide semiconductor (CMOS) circuit for depressing synapses is designed for demonstrating applications of spiking neural networks for contrast-invariant pattern classification and synchrony detection. Although the unit circuit consists of only five minimum-sized transistors, they emulate fundamental properties of depressing synapses. The results of the operations are evaluated by both experiments and simulation program with integrated circuit emphasis (SPICE).

[1]  Davide Badoni,et al.  Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI Implementation , 2000, Neural Computation.

[2]  C. Mead,et al.  Neuromorphic analogue VLSI. , 1995, Annual review of neuroscience.

[3]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[4]  Alan F. Murray,et al.  Programmable Analog Pulse-Firing Neural Networks , 1988, NIPS.

[5]  Nicholas J. Priebe,et al.  Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning. , 2001, Journal of neurophysiology.

[6]  Guido Bugmann Synaptic depression increases the selectivity of a neuron to its preferred pattern and binarizes the neural code. , 2002, Bio Systems.

[7]  Jack L. Meador,et al.  A Low-Power CMOS Circuit Which Emulates Temporal Electrical Properties of Neurons , 1988, NIPS.

[8]  Shih-Chii Liu,et al.  Analog VLSI: Circuits and Principles , 2002 .

[9]  Christopher J. Bishop,et al.  Pulsed Neural Networks , 1998 .

[10]  Shih-Chii Liu Analog VLSI Circuits for Short-Term Dynamic Synapses , 2003, EURASIP J. Adv. Signal Process..

[11]  Idan Segev,et al.  Reading Neuronal Synchrony with Depressing Synapses , 1998, Neural Computation.

[12]  Tetsuya Asai,et al.  A subthreshold MOS neuron circuit based on the Volterra system , 2003, IEEE Trans. Neural Networks.

[13]  Richard H. R. Hahnloser,et al.  Silicon synaptic depression , 2001, Biological Cybernetics.

[14]  Tobi Delbrück,et al.  Orientation-Selective aVLSI Spiking Neurons , 2001, NIPS.

[15]  Stefano Fusi,et al.  Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates , 2002, Biological Cybernetics.

[16]  José Luis Huertas Díaz,et al.  A CMOS Implementation of Fitzhugh-Nagumo Neuron Model , 1990 .

[17]  James M. Bower,et al.  Modeling Small Oscillating Biological Networks in Analog VLSI , 1988, NIPS.

[18]  Henry Markram,et al.  Neural Networks with Dynamic Synapses , 1998, Neural Computation.

[19]  Bernabe Linares-Barranco,et al.  A CMOS Implementation of Fitzhugh-Nagumo Neuron Model , 1990, ESSCIRC '90: Sixteenth European Solid-State Circuits Conference.