An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems

In this paper, we show that unbalanced optimal transport provides a convenient framework to handle reaction and diffusion processes in a unified metric setting. We use a constructive method, alternating minimizing movements for the Wasserstein distance and for the Fisher-Rao distance, and prove existence of weak solutions for general scalar reaction-diffusion-advection equations. We extend the approach to systems of multiple interacting species, and also consider an application to a very degenerate diffusion problem involving a Gamma-limit. Moreover, some numerical simulations are included.

[1]  Jonathan Zinsl Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations , 2014, 1412.3266.

[2]  B. Perthame,et al.  The Hele–Shaw Asymptotics for Mechanical Models of Tumor Growth , 2013, Archive for Rational Mechanics and Analysis.

[3]  Simone Di Marino,et al.  A tumor growth model of Hele-Shaw type as a gradient flow , 2017, ESAIM: Control, Optimisation and Calculus of Variations.

[4]  Felix Otto,et al.  Dynamics of Labyrinthine Pattern Formation in Magnetic Fluids: A Mean‐Field Theory , 1998 .

[5]  Alexander Mielke,et al.  Optimal Transport in Competition with Reaction: The Hellinger-Kantorovich Distance and Geodesic Curves , 2015, SIAM J. Math. Anal..

[6]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[7]  F. Santambrogio,et al.  BV Estimates in Optimal Transportation and Applications , 2015, 1503.06389.

[8]  Thomas O. Gallouët,et al.  A JKO Splitting Scheme for Kantorovich-Fisher-Rao Gradient Flows , 2016, SIAM J. Math. Anal..

[9]  Xiang Xu,et al.  A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations , 2015, 1501.04437.

[10]  C. Villani Topics in Optimal Transportation , 2003 .

[11]  F. Fleißner Γ-convergence and relaxations for gradient flows in metric spaces: a minimizing movement approach , 2016, ESAIM: Control, Optimisation and Calculus of Variations.

[12]  F. Santambrogio Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .

[13]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[14]  Riccarda Rossi,et al.  Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces , 2003 .

[15]  Lénaïc Chizat,et al.  Scaling Algorithms for Unbalanced Transport Problems , 2016, 1607.05816.

[16]  G. Peyré,et al.  Unbalanced Optimal Transport: Geometry and Kantorovich Formulation , 2015 .

[17]  A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts , 2016, 1606.04793.

[18]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[19]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[20]  Jean-David Benamou,et al.  An augmented Lagrangian approach to Wasserstein gradient flows and applications , 2016 .

[21]  Giuseppe Savaré,et al.  Optimal Entropy-Transport problems and a new Hellinger–Kantorovich distance between positive measures , 2015, 1508.07941.

[22]  Bertrand Maury,et al.  Handling congestion in crowd motion modeling , 2011, Networks Heterog. Media.

[23]  Matthias Liero,et al.  Gradient structures and geodesic convexity for reaction–diffusion systems , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  François-Xavier Vialard,et al.  An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics , 2010, Foundations of Computational Mathematics.

[25]  Felix Otto,et al.  Doubly Degenerate Diffusion Equations as Steepest Descent , 1996 .

[26]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[27]  Nicola Gigli,et al.  A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions , 2010 .

[28]  A. Tudorascu,et al.  Variational Principle for General Diffusion Problems , 2004 .

[29]  M. Golinski,et al.  Mathematical Biology , 2005 .

[30]  M. Laborde On some non linear evolution systems which are perturbations of Wasserstein gradient flows , 2015, 1506.00126.

[31]  B. Piccoli,et al.  Generalized Wasserstein Distance and its Application to Transport Equations with Source , 2012, 1206.3219.

[32]  Andrea Braides Γ-convergence for beginners , 2002 .

[33]  B. Perthame,et al.  Traveling wave solution of the Hele–Shaw model of tumor growth with nutrient , 2014, 1401.3649.

[34]  B. Perthame Transport Equations in Biology , 2006 .

[35]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[36]  S. Kondratyev,et al.  A new optimal transport distance on the space of finite Radon measures , 2015, Advances in Differential Equations.

[37]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[38]  Dmitry Vorotnikov,et al.  A fitness-driven cross-diffusion system from polulation dynamics as a gradient flow , 2016, 1603.06431.

[39]  Daniel Matthes,et al.  Cahn–Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics , 2012, 1201.2367.

[40]  Inwon C. Kim,et al.  Quasi-static evolution and congested crowd transport , 2013, 1304.3072.

[41]  Marco Di Francesco,et al.  Measure solutions for non-local interaction PDEs with two species , 2013 .

[42]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[43]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[44]  M. Pierre Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey , 2010 .

[45]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[46]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[47]  M. Agueh Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.

[48]  R. McCann,et al.  A Family of Nonlinear Fourth Order Equations of Gradient Flow Type , 2009, 0901.0540.