A review of extensive facility location in networks

Abstract A facility is called ‘extensive’ if, for purposes of location, it is too large in relation to its environment regarding the activities of interest for it to be considered as a point. The literature on location on a network of ordinary and obnoxious extensive facilities is reviewed. Suggestions are made for possible directions of future research.

[1]  Michael B. Richey,et al.  Optimal location of a path or tree on a network with cycles , 1990, Networks.

[2]  Rajan Batta,et al.  Optimal Obnoxious Paths on a Network: Transportation of Hazardous Materials , 1988, Oper. Res..

[3]  Yash P. Aneja,et al.  Location Of A Tree Shaped Facility In A Network , 1992 .

[4]  Timothy J. Lowe,et al.  A minimum-length covering subtree of a tree , 1990 .

[5]  Erik Rolland,et al.  Efficient Algorithms for Solving the Shortest Covering Path Problem , 1994, Transp. Sci..

[6]  G. Laporte,et al.  Maximizing user convenience and postal service efficiency in post box location , 1986 .

[7]  J. Current,et al.  Theory and methodology , 1991 .

[8]  Hokey Min,et al.  Multiobjective design of transportation networks: taxonomy and annotation , 1986 .

[9]  Michael Kuby,et al.  Proactive optimization of toxic waste transportation, location and technology , 1995 .

[10]  John R. Current The Design of a Hierarchical Transportation Network with Transshipment Facilities , 1988, Transp. Sci..

[11]  Mark H. Karwan,et al.  Modeling Equity of Risk in the Transportation of Hazardous Materials , 1990, Oper. Res..

[12]  Jared L. Cohon,et al.  THE MEDIAN SHORTEST PATH PROBLEM : A MULTIOBJECTIVE APPROACH TO ANALYZE COST VS. ACCESSIBILITY IN THE DESIGN OF TRANSPORTATION NETWORKS , 1987 .

[13]  Peter J. Slater,et al.  A Linear Algorithm for a Core of a Tree , 1980, J. Algorithms.

[14]  Oli B.G. Madsen,et al.  A comparative study of heuristics for a two-level routing-location problem , 1980 .

[15]  Rajan Batta,et al.  A network-based model for transporting extremely hazardous materials , 1993, Oper. Res. Lett..

[16]  Charles ReVelle,et al.  SYMPOSIUM ON LOCATION PROBLEMS: IN MEMORY OF LEON COOPER.: THE SHORTEST COVERING PATH PROBLEM: AN APPLICATION OF LOCATIONAL CONSTRAINTS TO NETWORK DESIGN , 1984 .

[17]  Rajan Batta,et al.  Equitable Sequencing of a Given Set of Hazardous Materials Shipments , 1991, Transp. Sci..

[18]  Pitu B. Mirchandani,et al.  Multiobjective routing of hazardous materials in stochastic networks , 1993 .

[19]  Oded Berman,et al.  Optimal Minimax Path of a Single Service Unit on a Network to Nonservice Destinations , 1987, Transp. Sci..

[20]  Konstantinos G. Zografos,et al.  A Combined Location-Routing Model for Hazardous Waste Transportation and Disposal , 1989 .

[21]  H. Pirkul,et al.  The hierarchical network design problem with transshipment facilities , 1991 .

[22]  Konstantinos G. Zografos,et al.  Multi‐Objective Programming Approach for Routing Hazardous Materials , 1989 .

[23]  Oded Berman,et al.  Optimal Path of a Single Service Unit on a Network to a “Nonemergency” Destination , 1983 .

[24]  J. Current,et al.  The median tour and maximal covering tour problems: Formulations and heuristics , 1994 .

[25]  Frank Harary,et al.  Distance in graphs , 1990 .

[26]  Peter J. Slater Some definitions of central structures , 1984 .

[27]  Thomas L. Magnanti,et al.  Network Design and Transportation Planning: Models and Algorithms , 1984, Transp. Sci..

[28]  Timothy J. Lowe,et al.  The generalized P-forest problem on a tree network , 1992, Networks.

[29]  Rajan Batta,et al.  A Multiple Route Conditional Risk Model For Transporting Hazardous Materials , 1995 .

[30]  A. Volgenant,et al.  Reducing the hierarchical network design problem , 1989 .

[31]  J. Current,et al.  The Minimum‐Covering/Shortest‐Path Problem* , 1988 .

[32]  Edward Minieka,et al.  On Finding the Core of a Tree with a Specified Length , 1983, J. Algorithms.

[33]  Mark A. Turnquist,et al.  Modeling and Analysis for Hazardous Materials Transportation: Risk Analysis, Routing/Scheduling and Facility Location , 1991, Transp. Sci..

[34]  Hasan Pirkul,et al.  The Hierarchical Network Design Problem: A New Formulation and Solution Procedures , 1991, Transp. Sci..

[35]  Vicki Aaronson Hutson,et al.  Maximal Direct Covering Tree Problems , 1989, Transp. Sci..

[36]  Umit Akinc,et al.  Optimal routing and process scheduling for a mobile service facility , 1992, Networks.

[37]  Timothy J. Lowe,et al.  A minimum length covering subgraph of a network , 1989 .

[38]  John R. Current,et al.  The Covering Salesman Problem , 1989, Transp. Sci..

[39]  G. Laporte,et al.  NEW DIRECTIONS IN PLANT LOCATION , 1993 .

[40]  Martine Labbé,et al.  On locating path- or tree-shaped facilities on networks , 1993, Networks.

[41]  Mark H. Karwan,et al.  The equity constrained shortest path problem , 1990, Comput. Oper. Res..

[42]  Vicki Aaronson Hutson,et al.  Indirect covering tree problems on spanning tree networks , 1993 .

[43]  Mark H. Karwan,et al.  On the Analysis of Two New Models for Transporting Hazardous Materials , 1996, Oper. Res..

[44]  J. Current,et al.  The hierarchical network design problem , 1986 .

[45]  George F. List,et al.  An Integrated Network/Planar Multiobjective Model for Routing and Siting for Hazardous Materials and Wastes , 1991, Transp. Sci..

[46]  P. J. Slater Centrality of paths and vertices in a graph: cores and pits , 1980 .

[47]  Hanif D. Sherali,et al.  Minisum and minimax paths of a moving facility on a network , 1992, Comput. Oper. Res..

[48]  Jared L. Cohon,et al.  Simultaneous Siting and Routing in the Disposal of Hazardous Wastes , 1991, Transp. Sci..

[49]  Arie Tamir,et al.  On a tree-shaped facility location problem of Minieka , 1992, Networks.

[50]  Edward Minieka The optimal location of a path or tree in a tree network , 1985, Networks.

[51]  David Simchi-Levi,et al.  A Location Based Heuristic for General Routing Problems , 1995, Oper. Res..

[52]  Shih-Miao Chin,et al.  BICRITERION ROUTING SCHEME FOR NUCLEAR SPENT FUEL TRANSPORTATION , 1989 .

[53]  J. Current,et al.  Maximal covering tree problems , 1993 .

[54]  Shietung Peng,et al.  Algorithms for a Core and k-Tree Core of a Tree , 1993, J. Algorithms.

[55]  Udatta S. Palekar,et al.  Location Models with Routing Considerations for a Single Obnoxious Facility , 1993, Transp. Sci..

[56]  T. Lowe,et al.  The location of central structures in trees , 1988, Comput. Oper. Res..

[57]  P. Slater Locating Central Paths in a Graph , 1982 .

[58]  Timothy J. Lowe,et al.  Locating A Median Subtree On A Network , 1991 .

[59]  S. M. Hedetniemi,et al.  Linear Algorithms for Finding the Jordan Center and Path Center of a Tree , 1981 .

[60]  J. Current,et al.  The maximum covering/shortest path problem: A multiobjective network design and routing formulation , 1985 .